File size: 4,289 Bytes
030bc4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1513d3
030bc4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aae26f3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import os
from typing import List
from dotenv import load_dotenv
import chainlit as cl
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain.chains import RetrievalQA
from langchain_openai import ChatOpenAI
from langchain_openai import OpenAIEmbeddings

# Load environment variables
load_dotenv()

# Initialize OpenAI API key
openai_api_key = os.getenv('sk-None-Nn6BodKwwjNYiNYT2QtWT3BlbkFJqTm7b3Fq4HftPntWdkUa')

# Initialize embedding model using OpenAI
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key,model="text-embedding-3-small")

# Initialize vector store
vector_store = None

# Store PDF file paths
pdf_files = {}

# Define the path for the FAISS index
FAISS_INDEX_PATH = "faiss_index"
FAISS_INDEX_FILE = os.path.join(FAISS_INDEX_PATH, "index.faiss")

def process_pdfs(directory: str) -> None:
    """Process all PDFs in the given directory and add them to the vector store."""
    global vector_store, pdf_files
    documents = []

    for filename in os.listdir(directory):
        if filename.endswith(".pdf"):
            file_path = os.path.join(directory, filename)
            loader = PyPDFLoader(file_path)
            documents.extend(loader.load())
            pdf_files[filename] = file_path

    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    texts = text_splitter.split_documents(documents)

    if os.path.exists(FAISS_INDEX_FILE):
        try:
            vector_store = FAISS.load_local(FAISS_INDEX_PATH, embeddings, allow_dangerous_deserialization=True)
            vector_store.add_documents(texts)
        except Exception as e:
            print(f"Error loading FAISS index: {e}")
            vector_store = FAISS.from_documents(texts, embeddings)
    else:
        vector_store = FAISS.from_documents(texts, embeddings)

    # Save the updated vector store
    if not os.path.exists(FAISS_INDEX_PATH):
        os.makedirs(FAISS_INDEX_PATH)
    vector_store.save_local(FAISS_INDEX_PATH)

@cl.on_chat_start
async def start():
    """Initialize the chat session."""
    await cl.Message(content="Welcome! Processing PDFs...").send()

    # Process PDFs (replace with your PDF directory)
    process_pdfs(r"C:\Users\sumes\OneDrive\Documents\pdf_docs")

    await cl.Message(content="PDFs processed. You can now ask questions!").send()

@cl.on_message
async def main(message: cl.Message):
    """Handle user messages and generate responses."""
    if vector_store is None:
        await cl.Message(content="Error: Vector store not initialized.").send()
        return

    query = message.content

    retriever = vector_store.as_retriever(search_kwargs={"k": 3})

    # Initialize the OpenAI language model
    llm = ChatOpenAI(openai_api_key=openai_api_key, model="gpt-4o-mini", temperature=0)

    qa_chain = RetrievalQA.from_chain_type(
        llm=llm,
        chain_type="stuff",
        retriever=retriever,
        return_source_documents=True
    )

    result = qa_chain(query)
    answer = result['result']
    source_docs = result['source_documents']

    await cl.Message(content=answer).send()

    if source_docs:
        unique_sources = set()
        for doc in source_docs:
            file_name = os.path.basename(doc.metadata['source'])
            if file_name in pdf_files and file_name not in unique_sources:
                unique_sources.add(file_name)
                file_path = pdf_files[file_name]
                elements = [
                    cl.Text(name=file_name, content=f"Source: {file_name}"),
                    cl.File(name=file_name, path=file_path, display="inline")
                ]
                await cl.Message(content=f"Source: {file_name}", elements=elements).send()

        other_sources = [doc.metadata['source'] for doc in source_docs if os.path.basename(doc.metadata['source']) not in pdf_files]
        unique_other_sources = set(other_sources)
        if unique_other_sources:
            sources_message = "Other Sources:\n" + "\n".join(f"- {source}" for source in unique_other_sources)
            await cl.Message(content=sources_message).send()