vineeth N
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,7 @@ from langchain_community.document_loaders import PyPDFLoader
|
|
9 |
from langchain.chains import RetrievalQA
|
10 |
from langchain_openai import ChatOpenAI
|
11 |
from langchain_openai import OpenAIEmbeddings
|
|
|
12 |
|
13 |
# Load environment variables
|
14 |
load_dotenv()
|
@@ -30,51 +31,51 @@ FAISS_INDEX_PATH = "faiss_index"
|
|
30 |
FAISS_INDEX_FILE = os.path.join(FAISS_INDEX_PATH, "index.faiss")
|
31 |
|
32 |
@st.cache_resource
|
33 |
-
def
|
34 |
-
"""Process
|
35 |
global vector_store, pdf_files
|
36 |
-
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
loader = PyPDFLoader(file_path)
|
42 |
-
documents.extend(loader.load())
|
43 |
-
pdf_files[filename] = file_path
|
44 |
|
45 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
46 |
texts = text_splitter.split_documents(documents)
|
47 |
|
48 |
-
if
|
49 |
-
try:
|
50 |
-
vector_store = FAISS.load_local(FAISS_INDEX_PATH, embeddings, allow_dangerous_deserialization=True)
|
51 |
-
vector_store.add_documents(texts)
|
52 |
-
except Exception as e:
|
53 |
-
st.error(f"Error loading FAISS index: {e}")
|
54 |
-
vector_store = FAISS.from_documents(texts, embeddings)
|
55 |
-
else:
|
56 |
vector_store = FAISS.from_documents(texts, embeddings)
|
|
|
|
|
57 |
|
58 |
# Save the updated vector store
|
59 |
if not os.path.exists(FAISS_INDEX_PATH):
|
60 |
os.makedirs(FAISS_INDEX_PATH)
|
61 |
vector_store.save_local(FAISS_INDEX_PATH)
|
62 |
|
|
|
|
|
|
|
63 |
def main():
|
64 |
st.title("PDF Question Answering System")
|
65 |
|
66 |
-
#
|
67 |
-
|
68 |
-
process_pdfs(pdf_directory)
|
69 |
|
70 |
-
|
|
|
|
|
71 |
|
72 |
# User input
|
73 |
user_question = st.text_input("Ask a question about the PDFs:")
|
74 |
|
75 |
if user_question:
|
76 |
if vector_store is None:
|
77 |
-
st.error("Error:
|
78 |
return
|
79 |
|
80 |
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
|
|
|
9 |
from langchain.chains import RetrievalQA
|
10 |
from langchain_openai import ChatOpenAI
|
11 |
from langchain_openai import OpenAIEmbeddings
|
12 |
+
import tempfile
|
13 |
|
14 |
# Load environment variables
|
15 |
load_dotenv()
|
|
|
31 |
FAISS_INDEX_FILE = os.path.join(FAISS_INDEX_PATH, "index.faiss")
|
32 |
|
33 |
@st.cache_resource
|
34 |
+
def process_pdf(uploaded_file):
|
35 |
+
"""Process the uploaded PDF and add it to the vector store."""
|
36 |
global vector_store, pdf_files
|
37 |
+
|
38 |
+
# Create a temporary file to store the uploaded PDF
|
39 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
|
40 |
+
tmp_file.write(uploaded_file.getvalue())
|
41 |
+
tmp_file_path = tmp_file.name
|
42 |
|
43 |
+
loader = PyPDFLoader(tmp_file_path)
|
44 |
+
documents = loader.load()
|
45 |
+
pdf_files[uploaded_file.name] = tmp_file_path
|
|
|
|
|
|
|
46 |
|
47 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
48 |
texts = text_splitter.split_documents(documents)
|
49 |
|
50 |
+
if vector_store is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
vector_store = FAISS.from_documents(texts, embeddings)
|
52 |
+
else:
|
53 |
+
vector_store.add_documents(texts)
|
54 |
|
55 |
# Save the updated vector store
|
56 |
if not os.path.exists(FAISS_INDEX_PATH):
|
57 |
os.makedirs(FAISS_INDEX_PATH)
|
58 |
vector_store.save_local(FAISS_INDEX_PATH)
|
59 |
|
60 |
+
# Clean up the temporary file
|
61 |
+
os.unlink(tmp_file_path)
|
62 |
+
|
63 |
def main():
|
64 |
st.title("PDF Question Answering System")
|
65 |
|
66 |
+
# File uploader
|
67 |
+
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
|
|
|
68 |
|
69 |
+
if uploaded_file is not None:
|
70 |
+
process_pdf(uploaded_file)
|
71 |
+
st.success(f"PDF '{uploaded_file.name}' processed. You can now ask questions!")
|
72 |
|
73 |
# User input
|
74 |
user_question = st.text_input("Ask a question about the PDFs:")
|
75 |
|
76 |
if user_question:
|
77 |
if vector_store is None:
|
78 |
+
st.error("Error: No PDFs have been uploaded yet.")
|
79 |
return
|
80 |
|
81 |
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
|