Spaces:
Runtime error
Runtime error
File size: 9,498 Bytes
61448a4 9e74540 61448a4 08fb6d9 61448a4 08fb6d9 dc3cb2a 61448a4 dc3cb2a fe5d243 61448a4 fe5d243 61448a4 e66a8fa 61448a4 9e74540 08fb6d9 9e74540 7ee7b26 fe5d243 7ee7b26 34d1458 61448a4 08fb6d9 34d1458 08fb6d9 34d1458 08fb6d9 34d1458 08fb6d9 34d1458 08fb6d9 34d1458 9e74540 08fb6d9 9e74540 08fb6d9 9e74540 08fb6d9 9e74540 08fb6d9 9e74540 34d1458 08fb6d9 34d1458 08fb6d9 34d1458 08fb6d9 34d1458 08fb6d9 e7d8291 fe5d243 34d1458 9e74540 34d1458 fe5d243 34d1458 dc3cb2a fe5d243 9e74540 dc3cb2a f58e4d2 dc3cb2a 61448a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import streamlit as st
import pandas as pd
import numpy as np
from PIL import Image
import pickle
import tokenizers
import torch
from transformers import (
CLIPModel,
AutoProcessor
)
import streamlit.components.v1 as components
import base64
def render_svg(svg_filename):
with open(svg_filename,"r") as f:
lines = f.readlines()
svg=''.join(lines)
"""Renders the given svg string."""
b64 = base64.b64encode(svg.encode('utf-8')).decode("utf-8")
html = r'<img src="data:image/svg+xml;base64,%s"/>' % b64
st.write(html, unsafe_allow_html=True)
@st.cache(
hash_funcs={
torch.nn.parameter.Parameter: lambda _: None,
tokenizers.Tokenizer: lambda _: None,
tokenizers.AddedToken: lambda _: None
}
)
def load_path_clip():
model = CLIPModel.from_pretrained("vinid/plip")
processor = AutoProcessor.from_pretrained("vinid/plip")
return model, processor
@st.cache
def init():
with open('data/twitter.asset', 'rb') as f:
data = pickle.load(f)
meta = data['meta'].reset_index(drop=True)
image_embedding = data['image_embedding']
text_embedding = data['text_embedding']
print(meta.shape, image_embedding.shape)
validation_subset_index = meta['source'].values == 'Val_Tweets'
return meta, image_embedding, text_embedding, validation_subset_index
def embed_images(model, images, processor):
inputs = processor(images=images)
pixel_values = torch.tensor(np.array(inputs["pixel_values"]))
with torch.no_grad():
embeddings = model.get_image_features(pixel_values=pixel_values)
return embeddings
def embed_texts(model, texts, processor):
inputs = processor(text=texts, padding="longest")
input_ids = torch.tensor(inputs["input_ids"])
attention_mask = torch.tensor(inputs["attention_mask"])
with torch.no_grad():
embeddings = model.get_text_features(
input_ids=input_ids, attention_mask=attention_mask
)
return embeddings
def app():
st.title('Text to Image Retrieval')
st.markdown('#### A pathology image search engine that geos from texts to images.')
col1, col2 = st.columns([1,1])
with col1:
st.markdown("The text-to-image retrieval system can serve as an image search engine, enabling users to match images from multiple queries and retrieve the most relevant image based on a sentence description. This generic system can comprehend semantic and interrelated knowledge, such as “Breast tumor surrounded by fat”.")
st.markdown("Unlike searching keywords and sentences from Google and indirectly matching the images from the target text, our proposed pathology image retrieval allows direct comparison between input sentences and images.")
with col2:
render_svg("resources/SVG/Asset 54.svg")
meta, image_embedding, text_embedding, validation_subset_index = init()
model, processor = load_path_clip()
st.markdown('### Search')
st.markdown('How to use this: first of all, select a dataset on which to do retrieval.\n'
'Then, either select a predefined search query or input one yourself.')
col1, col2 = st.columns(2)
with col1:
data_options = ["All Twitter Data (03/21/2006 — 01/15/2023)",
"Validation Twitter data (11/16/2022 — 01/15/2023)"]
st.selectbox(
"Dataset",
key="datapool",
options=data_options,
)
with col2:
retrieval_options = ["Image only",
"Text and image (beta)",
]
st.radio(
"Similarity calcuation 👉",
key="calculation_option",
options=retrieval_options,
)
col1, col2 = st.columns(2)
with col1:
# Create selectbox
examples = ['Breast tumor surrounded by fat',
'HER2+ breast tumor',
'Colorectal cancer tumor on epithelium',
'An image of endometrium epithelium',
'Breast cancer DCIS',
'Papillary carcinoma in breast tissue',
]
query_1 = st.selectbox("Select an example", options=examples)
col1_submit = True
with col2:
form = st.form(key='my_form')
query_2 = form.text_input(label='Or input your custom query:')
submit_button = form.form_submit_button(label='Submit')
if submit_button:
col1_submit = False
if col1_submit:
query = query_1
else:
query = query_2
input_text = embed_texts(model, [query], processor)[0].detach().cpu().numpy()
input_text = input_text/np.linalg.norm(input_text)
# Sort IDs by cosine-similarity from high to low
if st.session_state.calculation_option == retrieval_options[0]: # Image only
similarity_scores = input_text.dot(image_embedding.T)
else: # Text and Image
similarity_scores_i = input_text.dot(image_embedding.T)
similarity_scores_t = input_text.dot(text_embedding.T)
similarity_scores_i = similarity_scores_i / np.max(similarity_scores_i)
similarity_scores_t = similarity_scores_t / np.max(similarity_scores_t)
similarity_scores = (similarity_scores_i + similarity_scores_t) / 2
############################################################
# Get top results
############################################################
topn = 5
df = pd.DataFrame(np.c_[np.arange(len(meta)), similarity_scores, meta['weblink'].values], columns = ['idx', 'score', 'twitterlink'])
if st.session_state.datapool == data_options[1]: #Use val twitter data
df = df.loc[validation_subset_index,:]
df = df.sort_values('score', ascending=False)
df = df.drop_duplicates(subset=['twitterlink'])
best_id_topk = df['idx'].values[:topn]
target_scores = df['score'].values[:topn]
target_weblinks = df['twitterlink'].values[:topn]
############################################################
# Display results
############################################################
text = '<font size="4">Your input query: <span style="background-color: rgb(230,230,230);"><b>%s</b></span>' % query + \
' (Try search it directly on [Twitter](https://twitter.com/search?q=%s&src=typed_query) or [Google](https://www.google.com/search?q=%s))</font>' % (query.replace(' ', '%20'), query.replace(' ', '+'))
st.markdown(text, unsafe_allow_html=True)
st.markdown('#### Top 5 results:')
topk_options = ['1st', '2nd', '3rd', '4th', '5th']
tab = {}
tab[0], tab[1], tab[2] = st.columns(3)
for i in [0,1,2]:
with tab[i]:
topn_value = i
topn_txt = topk_options[i]
st.caption(f'The {topn_txt} relevant image (similarity = {target_scores[topn_value]:.4f})')
components.html('''
<blockquote class="twitter-tweet">
<a href="%s"></a>
</blockquote>
<script async src="https://platform.twitter.com/widgets.js" charset="utf-8">
</script>
''' % target_weblinks[topn_value],
height=600)
tab[3], tab[4], tab[5] = st.columns(3)
for i in [3,4]:
with tab[i]:
topn_value = i
topn_txt = topk_options[i]
st.caption(f'The {topn_txt} relevant image (similarity = {target_scores[topn_value]:.4f})')
components.html('''
<blockquote class="twitter-tweet">
<a href="%s"></a>
</blockquote>
<script async src="https://platform.twitter.com/widgets.js" charset="utf-8">
</script>
''' % target_weblinks[topn_value],
height=800)
st.markdown("""---""")
st.markdown('Disclaimer')
st.caption('Please be advised that this function has been developed in compliance with the Twitter policy of data usage and sharing. It is important to note that the results obtained from this function are not intended to constitute medical advice or replace consultation with a qualified medical professional. The use of this function is solely at your own risk and should be consistent with applicable laws, regulations, and ethical considerations. We do not warrant or guarantee the accuracy, completeness, suitability, or usefulness of this function for any particular purpose, and we hereby disclaim any liability arising from any reliance placed on this function or any results obtained from its use. If you wish to review the original Twitter post, you should access the source page directly on Twitter.')
st.markdown('Privacy statement')
st.caption('In accordance with the privacy and control policy of Twitter, we hereby declared that the data redistributed by us shall only comprise of Tweet IDs. The Tweet IDs will be employed to establish a linkage with the original Twitter post, as long as the original post is still accessible. The hyperlink will cease to function if the user deletes the original post. It is important to note that all tweets displayed on our service have already been classified as non-sensitive by Twitter. It is strictly prohibited to redistribute any content apart from the Tweet IDs. Any distribution carried out must adhere to the laws and regulations applicable in your jurisdiction, including export control laws and embargoes.')
|