This view is limited to 50 files because it contains too many changes.  See the raw diff here.
Files changed (50) hide show
  1. .gitattributes +0 -8
  2. .gitignore +0 -2
  3. app.py +18 -15
  4. data/.gitignore +0 -1
  5. data/data_weblinks.csv +0 -3
  6. data/example_images/Books_0c29c0c4-8670-4aef-b1f1-2969a1859f86.png +0 -3
  7. data/example_images/Books_0fe87b11-b817-457d-9598-345a0479c11d.png +0 -3
  8. data/example_images/Books_3f9a06a8-a4b6-4f12-a980-8a7fabfcb44f.png +0 -3
  9. data/example_images/DigestPath_18-01592B_2019-05-07 22_04_43-lv1-17807-19672-6802-4901.jpg +0 -3
  10. data/example_images/DigestPath_18-01913A_2019-05-07 22_11_13-lv1-23474-19944-5901-4637.jpg +0 -3
  11. data/example_images/PubMed_5c725893-b7ac-4836-b573-bac87a2bfad6.jpg +0 -3
  12. data/example_images/PubMed_b8ccabaf-3d88-4f58-a391-71b42f81f209.jpg +0 -3
  13. data/example_images/Screenshot from 2023-03-09 00-17-50.png +0 -3
  14. data/example_images/WSSS4LUAD_1222870-21308-23101-[1, 1, 0].png +0 -3
  15. data/example_images/mitotic_figure.png +0 -3
  16. data/example_images/signet_1901991002_2019-06-11 10_08_35-lv0-74236-7501-2000-2000.jpeg +0 -3
  17. data/example_images/signet_2013-12622_2018-07-03 20_26_40-lv0-33518-23938-2000-2000.jpeg +0 -3
  18. data/example_images/signet_2019-06-11 09_58_43-lv0-91918-38650-2000-2000.jpeg +0 -3
  19. data/example_images/signetpos_2018_67251_1-3_2019-02-26 00_02_22-lv0-25023-19640-2066-2066.jpeg +0 -3
  20. data/img_2d_embedding.csv +0 -3
  21. data/twitter.asset +0 -3
  22. data/txt_2d_embedding.csv +0 -3
  23. details.py +0 -73
  24. home.py +3 -44
  25. image2image.py +0 -239
  26. introduction.md +2 -0
  27. plip_support.py +9 -0
  28. requirements.txt +5 -6
  29. resources/4x/Fig1.png +0 -3
  30. resources/4x/Fig1ab.png +0 -3
  31. resources/4x/Fig1c.png +0 -3
  32. resources/4x/Fig1d.png +0 -3
  33. resources/4x/Fig1e.png +0 -3
  34. resources/4x/Fig1f.png +0 -3
  35. resources/4x/image_retrieval.png +0 -3
  36. resources/SVG/.DS_Store +0 -0
  37. resources/SVG/Asset 47.svg +0 -3
  38. resources/SVG/Asset 48.svg +0 -3
  39. resources/SVG/Asset 49.svg +0 -3
  40. resources/SVG/Asset 50.svg +0 -3
  41. resources/SVG/Asset 51.svg +0 -3
  42. resources/SVG/Asset 52.svg +0 -3
  43. resources/SVG/Asset 53.svg +0 -3
  44. resources/SVG/Asset 54.svg +0 -3
  45. resources/example/1.png +0 -3
  46. resources/example/2.png +0 -3
  47. resources/example/3.png +0 -3
  48. text2image.py +40 -192
  49. data/example_images/Books_0f25e3de-2c23-46df-ac67-b7bcddd5e1e6.png β†’ tweet_eval_embeddings.npy +2 -2
  50. tweet_eval_retrieval.tsv +0 -0
.gitattributes CHANGED
@@ -32,11 +32,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
- *.csv filter=lfs diff=lfs merge=lfs -text
36
- *.asset filter=lfs diff=lfs merge=lfs -text
37
- twitter.asset filter=lfs diff=lfs merge=lfs -text
38
- *.psd filter=lfs diff=lfs merge=lfs -text
39
- *.jpg filter=lfs diff=lfs merge=lfs -text
40
- *.jpeg filter=lfs diff=lfs merge=lfs -text
41
- *.png filter=lfs diff=lfs merge=lfs -text
42
- *.svg filter=lfs diff=lfs merge=lfs -text
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
.gitignore DELETED
@@ -1,2 +0,0 @@
1
- /__pycache__
2
- *.pyc
 
 
 
app.py CHANGED
@@ -1,27 +1,30 @@
 
 
1
  import home
 
 
 
 
2
  import text2image
3
- import image2image
4
- import visualization
5
  import streamlit as st
6
- import details
7
-
8
- st.set_page_config(layout="wide")
 
 
 
 
 
 
9
 
10
- st.sidebar.title("WebPLIP")
11
- st.sidebar.markdown("## Menu")
12
 
13
  PAGES = {
14
  "Introduction": home,
15
- "Details": details,
16
  "Text to Image": text2image,
17
- "Image to Image": image2image,
18
- "Visualization": visualization,
19
  }
20
 
21
  page = st.sidebar.radio("", list(PAGES.keys()))
22
- st.sidebar.markdown("## Links")
23
-
24
- st.sidebar.markdown("[PLIP Model](https://huggingface.co/vinid/plip)")
25
- st.sidebar.markdown("[OpenPath Dataset](https://drive.google.com/drive/folders/1b5UT8BzUphkHZavRG-fmiyY9JWYIWZER)")
26
- st.sidebar.markdown("[PLIP Code](https://github.com/vinid/path_eval)")
27
  PAGES[page].app()
 
1
+ import streamlit as st
2
+ import pandas as pd
3
  import home
4
+ import numpy as np
5
+ from PIL import Image
6
+ import requests
7
+ import transformers
8
  import text2image
9
+ import tokenizers
10
+ from io import BytesIO
11
  import streamlit as st
12
+ from transformers import CLIPModel
13
+ import clip
14
+ import torch
15
+ from transformers import (
16
+ VisionTextDualEncoderModel,
17
+ AutoFeatureExtractor,
18
+ AutoTokenizer
19
+ )
20
+ from transformers import AutoProcessor
21
 
22
+ st.sidebar.title("Explore our PLIP Demo")
 
23
 
24
  PAGES = {
25
  "Introduction": home,
 
26
  "Text to Image": text2image,
 
 
27
  }
28
 
29
  page = st.sidebar.radio("", list(PAGES.keys()))
 
 
 
 
 
30
  PAGES[page].app()
data/.gitignore DELETED
@@ -1 +0,0 @@
1
- /data_ignore
 
 
data/data_weblinks.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:962bb004ef3d4f3ba02659ece1c9d4ae8f61083410345f99ea525d1249662a4d
3
- size 16380376
 
 
 
 
data/example_images/Books_0c29c0c4-8670-4aef-b1f1-2969a1859f86.png DELETED

Git LFS Details

  • SHA256: f2c70f657d4acaf92a51421dd075f0a54253834544e5dca5be849caa0af063c1
  • Pointer size: 131 Bytes
  • Size of remote file: 787 kB
data/example_images/Books_0fe87b11-b817-457d-9598-345a0479c11d.png DELETED

Git LFS Details

  • SHA256: 0eeefc555403aee3977cdedc63838b11a5995689f267016c9b433a6d5e928ed8
  • Pointer size: 131 Bytes
  • Size of remote file: 368 kB
data/example_images/Books_3f9a06a8-a4b6-4f12-a980-8a7fabfcb44f.png DELETED

Git LFS Details

  • SHA256: 9941a8b66c25936984c1ad2db12ae0fa18a363816d521b170396bc087bf0d459
  • Pointer size: 132 Bytes
  • Size of remote file: 1.44 MB
data/example_images/DigestPath_18-01592B_2019-05-07 22_04_43-lv1-17807-19672-6802-4901.jpg DELETED

Git LFS Details

  • SHA256: eaca751d2758941ce95349b58986416c94bfc78b8d0323cddb539df5d22d438f
  • Pointer size: 132 Bytes
  • Size of remote file: 4.44 MB
data/example_images/DigestPath_18-01913A_2019-05-07 22_11_13-lv1-23474-19944-5901-4637.jpg DELETED

Git LFS Details

  • SHA256: 42dbb3aa3e956d25692e906b1ec02f76535395a7ebe8ee32758ca080b4e8d289
  • Pointer size: 132 Bytes
  • Size of remote file: 3.29 MB
data/example_images/PubMed_5c725893-b7ac-4836-b573-bac87a2bfad6.jpg DELETED

Git LFS Details

  • SHA256: 816b18aac61385c4046dcb627a83a8918256736a52ccc76e0acd0657e8ff8121
  • Pointer size: 131 Bytes
  • Size of remote file: 138 kB
data/example_images/PubMed_b8ccabaf-3d88-4f58-a391-71b42f81f209.jpg DELETED

Git LFS Details

  • SHA256: f2c9ecf471f89e6f9d1680c531014eab397eb010ea6cba70988d8a3133371a42
  • Pointer size: 131 Bytes
  • Size of remote file: 226 kB
data/example_images/Screenshot from 2023-03-09 00-17-50.png DELETED

Git LFS Details

  • SHA256: acbe540e69627f21c904abb8cac1beddfb70a63e9fcb47846022a05c0ccc3675
  • Pointer size: 131 Bytes
  • Size of remote file: 117 kB
data/example_images/WSSS4LUAD_1222870-21308-23101-[1, 1, 0].png DELETED

Git LFS Details

  • SHA256: 90e8c94411b011ad2873064528a8632d17e9fac0f11921c5fe2ce608d187c86d
  • Pointer size: 130 Bytes
  • Size of remote file: 76.9 kB
data/example_images/mitotic_figure.png DELETED

Git LFS Details

  • SHA256: d4360ef7c974d264a4e1065246b5d265b3db8a3f46ddf8bc49f272e9fc0d2055
  • Pointer size: 131 Bytes
  • Size of remote file: 446 kB
data/example_images/signet_1901991002_2019-06-11 10_08_35-lv0-74236-7501-2000-2000.jpeg DELETED

Git LFS Details

  • SHA256: 1b305c0b9bec2fce54a1a540a1589711867ade3ab13f9503e81a00eb076ce3ce
  • Pointer size: 131 Bytes
  • Size of remote file: 692 kB
data/example_images/signet_2013-12622_2018-07-03 20_26_40-lv0-33518-23938-2000-2000.jpeg DELETED

Git LFS Details

  • SHA256: 32b13a6104e9c8f5f152367d4f44750adb522cf237540cf71dfec680e8e649e4
  • Pointer size: 131 Bytes
  • Size of remote file: 715 kB
data/example_images/signet_2019-06-11 09_58_43-lv0-91918-38650-2000-2000.jpeg DELETED

Git LFS Details

  • SHA256: 694cc6f7242b80c619b4d2abbd331a1485e212491eb1ded0002235cb875cf2ec
  • Pointer size: 131 Bytes
  • Size of remote file: 651 kB
data/example_images/signetpos_2018_67251_1-3_2019-02-26 00_02_22-lv0-25023-19640-2066-2066.jpeg DELETED

Git LFS Details

  • SHA256: f105026842b9f78d07623d5d3535cad40d407ba9980d2ba8497ff73cf1d3f754
  • Pointer size: 131 Bytes
  • Size of remote file: 857 kB
data/img_2d_embedding.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:2c94660a66598254f87494fbb931f01a78feda5452d54c3b3939543a392d2fb7
3
- size 13600550
 
 
 
 
data/twitter.asset DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:533c5c023e099a2725be0241ca57d6218e37f1f355963ced8d2305270312e428
3
- size 245669888
 
 
 
 
data/txt_2d_embedding.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d5e5cde958eda7b8e74f327326029df1f7480c3bb2879141bdab8f71dd71fdd4
3
- size 13659850
 
 
 
 
details.py DELETED
@@ -1,73 +0,0 @@
1
- from pathlib import Path
2
- import streamlit as st
3
- import streamlit.components.v1 as components
4
- from PIL import Image
5
- import base64
6
-
7
- def read_markdown_file(markdown_file):
8
- return Path(markdown_file).read_text()
9
-
10
- def render_svg(svg_filename):
11
- with open(svg_filename,"r") as f:
12
- lines = f.readlines()
13
- svg=''.join(lines)
14
- """Renders the given svg string."""
15
- b64 = base64.b64encode(svg.encode('utf-8')).decode("utf-8")
16
- html = r'<img src="data:image/svg+xml;base64,%s"/>' % b64
17
- st.write(html, unsafe_allow_html=True)
18
-
19
-
20
- def app():
21
- #intro_markdown = read_markdown_file("introduction.md")
22
- #st.markdown(intro_markdown, unsafe_allow_html=True)
23
- st.markdown("# Leveraging medical Twitter to build a visual-language foundation model for pathology")
24
-
25
-
26
- st.markdown("The lack of annotated publicly available medical images is a major barrier for innovations. At the same time, many de-identified images and much knowledge are shared by clinicians on public forums such as medical Twitter. Here we harness these crowd platforms to curate OpenPath, a large dataset of <b>208,414</b> pathology images paired with natural language descriptions. This is the largest public dataset for pathology images annotated with natural text. We demonstrate the value of this resource by developing PLIP, a multimodal AI with both image and text understanding, which is trained on OpenPath. PLIP achieves state-of-the-art zero-shot and few-short performance for classifying new pathology images across diverse tasks. Moreover, PLIP enables users to retrieve similar cases by either image or natural language search, greatly facilitating knowledge sharing. Our approach demonstrates that publicly shared medical data is a tremendous opportunity that can be harnessed to advance biomedical AI.", unsafe_allow_html=True)
27
- render_svg("resources/SVG/Asset 49.svg")
28
-
29
- st.markdown('#### Watch our successful image-to-image retrieval via PLIP:')
30
- col1, col2, col3, _, _ = st.columns([1, 1, 1, 1, 1])
31
- with col1:
32
- st.markdown("[Similar cells](https://twitter.com/ZhiHuangPhD/status/1641906064823312384)")
33
- example1 = Image.open('resources/example/1.png')
34
- st.image(example1, caption='Example 1', output_format='png')
35
- with col2:
36
- st.markdown("[Salient object](https://twitter.com/ZhiHuangPhD/status/1641899092195565569)")
37
- example2 = Image.open('resources/example/2.png')
38
- st.image(example2, caption='Example 2', output_format='png')
39
- with col3:
40
- st.markdown("[Similar region](https://twitter.com/ZhiHuangPhD/status/1641911235288645632)")
41
- example3 = Image.open('resources/example/3.png')
42
- st.image(example3, caption='Example 3', output_format='png')
43
-
44
-
45
- st.markdown("#### PLIP is trained on the largest public vision–language pathology dataset: OpenPath")
46
-
47
- col1, col2 = st.columns([1, 1])
48
- with col1:
49
- st.markdown("Following the usage policy and guidelines from Twitter and other entities, we established so far the largest public vision–language pathology dataset. To ensure the quality of the data, OpenPath followed rigorous protocols for cohort inclusion and exclusion, including the removal of retweets, sensitive tweets, and non-pathology images, as well as text cleaning.", unsafe_allow_html=True)
50
- st.markdown("The final OpenPath dataset consists of:", unsafe_allow_html=True)
51
- st.markdown("- Tweets: 116,504 image–text pairs from Twitter posts (tweets) during Mar. 21, 2006 – Nov. 15, 2022 across 32 pathology subspecialty-specific hashtags;", unsafe_allow_html=True)
52
- st.markdown("- Replies: 59,869 image–text pairs from the associated replies that received the highest number of likes in the tweet, if applicable;", unsafe_allow_html=True)
53
- st.markdown("- PathLAION: 32,041 additional image–text pairs from the Internet which are outside from the Twitter community extracted from the LAION dataset.", unsafe_allow_html=True)
54
- st.markdown("Leveraging the largest publicly available pathology dataset which contains image–text pairs across 32 different pathology subspecialty-specific hashtags, where each image has detailed text descriptions, we fine-tuned a pre-trained CLIP model and proposed a multimodal deep learning model for pathology, PLIP.", unsafe_allow_html=True)
55
- with col2:
56
- render_svg("resources/SVG/Asset 50.svg")
57
- render_svg("resources/SVG/Asset 51.svg")
58
-
59
-
60
-
61
- st.markdown("#### PLIP is trained with connecting the image and text via contrastive learning")
62
-
63
- col1, col2 = st.columns([3, 1])
64
- with col1:
65
- st.markdown("The proposed PLIP model generates two embedding vectors from both the text and image encoders. These vectors were then forced to be similar for each of the paired image and text vectors and dissimilar for non-paired image and text pairs via contrastive learning.", unsafe_allow_html=True)
66
- fig1e = Image.open('resources/4x/Fig1e.png')
67
- st.image(fig1e, caption='PLIP training', output_format='png')
68
-
69
- with col2:
70
- render_svg("resources/SVG/Asset 53.svg")
71
-
72
-
73
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
home.py CHANGED
@@ -1,52 +1,11 @@
1
  from pathlib import Path
2
  import streamlit as st
3
- import streamlit.components.v1 as components
4
- from PIL import Image
5
- import base64
6
 
7
  def read_markdown_file(markdown_file):
8
  return Path(markdown_file).read_text()
9
 
10
- def render_svg(svg_filename):
11
- with open(svg_filename,"r") as f:
12
- lines = f.readlines()
13
- svg=''.join(lines)
14
- """Renders the given svg string."""
15
- b64 = base64.b64encode(svg.encode('utf-8')).decode("utf-8")
16
- html = r'<img src="data:image/svg+xml;base64,%s"/>' % b64
17
- st.write(html, unsafe_allow_html=True)
18
-
19
 
20
  def app():
21
-
22
- st.markdown("# A visual-language foundation model for pathology")
23
- st.markdown("This is a webapp for PLIP, our new fundational AI model for pathology and OpenPath our new dataset, **from our recent work**: Leveraging medical Twitter to build a visual-language foundation model for pathology")
24
- st.markdown("### Pathology Language and Image Pretraining (PLIP)\n We develop PLIP, a multimodal AI with both image and text understanding. PLIP achieves state-of-the-art zero-shot and few-short performance for classifying new pathology images across diverse tasks. Moreover, PLIP enables users to retrieve similar cases by either image or natural language search, greatly facilitating knowledge sharing. Our approach demonstrates that publicly shared medical data is a tremendous opportunity that can be harnessed to advance biomedical AI.")
25
-
26
- fig1e = Image.open('resources/4x/Fig1e.png')
27
- st.image(fig1e, caption='PLIP training procedure', output_format='png')
28
-
29
- st.markdown("### OpenPath Dataset\nThe lack of annotated publicly available medical images is a major barrier for innovations. At the same time, many de-identified images and much knowledge are shared by clinicians on public forums such as medical Twitter. Here we harness these crowd platforms to curate OpenPath, a large dataset of **208,414** pathology images paired with natural language descriptions")
30
-
31
- render_svg("resources/SVG/Asset 49.svg")
32
-
33
-
34
- st.markdown("### Documentation\n"
35
- "This webapp comes with different functionalities.\n"
36
- "* Details: The details page guides you through our work.\n"
37
- "* Text to Image: allows users to perform text search on a database of images.\n"
38
- "* Image to Image: allows users to perform image search on a database of images.\n"
39
- "")
40
-
41
- st.markdown("### Other Links\n"
42
- "* Download [OpenPath](https://drive.google.com/drive/folders/1b5UT8BzUphkHZavRG-fmiyY9JWYIWZER)\n"
43
- "* Code to reproduce [PLIP](https://github.com/vinid/path_eval) results\n"
44
- "* Link to the [PLIP Model](https://huggingface.co/vinid/plip)\n"
45
- "")
46
-
47
- st.markdown("""---""")
48
- st.markdown('Disclaimer')
49
- st.caption('Please be advised that this function has been developed in compliance with the Twitter policy of data usage and sharing. It is important to note that the results obtained from this function are not intended to constitute medical advice or replace consultation with a qualified medical professional. The use of this function is solely at your own risk and should be consistent with applicable laws, regulations, and ethical considerations. We do not warrant or guarantee the accuracy, completeness, suitability, or usefulness of this function for any particular purpose, and we hereby disclaim any liability arising from any reliance placed on this function or any results obtained from its use. If you wish to review the original Twitter post, you should access the source page directly on Twitter.')
50
-
51
- st.markdown('Privacy statement')
52
- st.caption('In accordance with the privacy and control policy of Twitter, we hereby declared that the data redistributed by us shall only comprise of Tweet IDs. The Tweet IDs will be employed to establish a linkage with the original Twitter post, as long as the original post is still accessible. The hyperlink will cease to function if the user deletes the original post. It is important to note that all tweets displayed on our service have already been classified as non-sensitive by Twitter. It is strictly prohibited to redistribute any content apart from the Tweet IDs. Any distribution carried out must adhere to the laws and regulations applicable in your jurisdiction, including export control laws and embargoes.')
 
1
  from pathlib import Path
2
  import streamlit as st
3
+
 
 
4
 
5
  def read_markdown_file(markdown_file):
6
  return Path(markdown_file).read_text()
7
 
 
 
 
 
 
 
 
 
 
8
 
9
  def app():
10
+ intro_markdown = read_markdown_file("introduction.md")
11
+ st.markdown(intro_markdown, unsafe_allow_html=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
image2image.py DELETED
@@ -1,239 +0,0 @@
1
- import streamlit as st
2
- import pandas as pd
3
- import numpy as np
4
- from PIL import Image
5
- import requests
6
- import tokenizers
7
- import os
8
- from io import BytesIO
9
- import pickle
10
- import base64
11
- import datetime
12
-
13
- import torch
14
- from transformers import (
15
- VisionTextDualEncoderModel,
16
- AutoFeatureExtractor,
17
- AutoTokenizer,
18
- CLIPModel,
19
- AutoProcessor
20
- )
21
- import streamlit.components.v1 as components
22
- from st_clickable_images import clickable_images #pip install st-clickable-images
23
-
24
-
25
- @st.cache(
26
- hash_funcs={
27
- torch.nn.parameter.Parameter: lambda _: None,
28
- tokenizers.Tokenizer: lambda _: None,
29
- tokenizers.AddedToken: lambda _: None
30
- }
31
- )
32
- def load_path_clip():
33
- model = CLIPModel.from_pretrained("vinid/plip")
34
- processor = AutoProcessor.from_pretrained("vinid/plip")
35
- return model, processor
36
-
37
- @st.cache
38
- def init():
39
- with open('data/twitter.asset', 'rb') as f:
40
- data = pickle.load(f)
41
- meta = data['meta'].reset_index(drop=True)
42
- image_embedding = data['image_embedding']
43
- text_embedding = data['text_embedding']
44
- print(meta.shape, image_embedding.shape)
45
- validation_subset_index = meta['source'].values == 'Val_Tweets'
46
- return meta, image_embedding, text_embedding, validation_subset_index
47
-
48
- def embed_images(model, images, processor):
49
- inputs = processor(images=images)
50
- pixel_values = torch.tensor(np.array(inputs["pixel_values"]))
51
-
52
- with torch.no_grad():
53
- embeddings = model.get_image_features(pixel_values=pixel_values)
54
- return embeddings
55
-
56
- def embed_texts(model, texts, processor):
57
- inputs = processor(text=texts, padding="longest")
58
- input_ids = torch.tensor(inputs["input_ids"])
59
- attention_mask = torch.tensor(inputs["attention_mask"])
60
-
61
- with torch.no_grad():
62
- embeddings = model.get_text_features(
63
- input_ids=input_ids, attention_mask=attention_mask
64
- )
65
- return embeddings
66
- def app():
67
- st.title('Image to Image Retrieval')
68
- st.markdown('#### A pathology image search engine that correlate images with images.')
69
- st.markdown("Image-to-image retrieval can be used to retrieve pathology images that have contents similar to the target image input, with the ability to comprehend the key components from the input image.")
70
-
71
- st.markdown('#### Demo')
72
-
73
- meta, image_embedding, text_embedding, validation_subset_index = init()
74
- model, processor = load_path_clip()
75
-
76
-
77
- col1, col2 = st.columns(2)
78
- with col1:
79
- data_options = ["All twitter data (03/21/2006 β€” 01/15/2023)",
80
- "Twitter validation data (11/16/2022 β€” 01/15/2023)"]
81
- st.radio(
82
- "Choose dataset for image retrieval πŸ‘‰",
83
- key="datapool",
84
- options=data_options,
85
- )
86
- with col2:
87
- retrieval_options = ["Image only",
88
- "Text and image (beta)",
89
- ]
90
- st.radio(
91
- "Similarity calcuation πŸ‘‰",
92
- key="calculation_option",
93
- options=retrieval_options,
94
- )
95
-
96
-
97
- st.markdown('Try out following examples:')
98
- example_path = 'data/example_images'
99
- list_of_examples = [os.path.join(example_path, v) for v in os.listdir(example_path)]
100
- example_imgs = []
101
- for file in list_of_examples:
102
- with open(file, "rb") as image:
103
- encoded = base64.b64encode(image.read()).decode()
104
- example_imgs.append(f"data:image/jpeg;base64,{encoded}")
105
- clicked = clickable_images(
106
- example_imgs,
107
- titles=[f"Image #{str(i)}" for i in range(len(example_imgs))],
108
- div_style={"display": "flex", "justify-content": "center", "flex-wrap": "wrap"},
109
- img_style={"margin": "5px", "height": "70px"},
110
- )
111
- isExampleClicked = False
112
- if clicked > -1:
113
- image = Image.open(list_of_examples[clicked])
114
- isExampleClicked = True
115
-
116
-
117
-
118
-
119
-
120
-
121
- col1, col2, _ = st.columns(3)
122
- with col1:
123
- query = st.file_uploader("Choose a file to upload")
124
-
125
-
126
- proceed = False
127
- if query:
128
- image = Image.open(query)
129
- proceed = True
130
- elif isExampleClicked:
131
- proceed = True
132
-
133
- if proceed:
134
- with col2:
135
- st.image(image, caption='Your upload')
136
-
137
- input_image = embed_images(model, [image], processor)[0].detach().cpu().numpy()
138
-
139
- input_image = input_image/np.linalg.norm(input_image)
140
-
141
- # Sort IDs by cosine-similarity from high to low
142
-
143
- if st.session_state.calculation_option == retrieval_options[0]: # Image only
144
- similarity_scores = input_image.dot(image_embedding.T)
145
- else: # Text and Image
146
- similarity_scores_i = input_image.dot(image_embedding.T)
147
- similarity_scores_t = input_image.dot(text_embedding.T)
148
- similarity_scores_i = similarity_scores_i/np.max(similarity_scores_i)
149
- similarity_scores_t = similarity_scores_t/np.max(similarity_scores_t)
150
- similarity_scores = (similarity_scores_i + similarity_scores_t)/2
151
-
152
-
153
- ############################################################
154
- # Get top results
155
- ############################################################
156
- topn = 5
157
- df = pd.DataFrame(np.c_[np.arange(len(meta)), similarity_scores, meta['weblink'].values], columns = ['idx', 'score', 'twitterlink'])
158
- if st.session_state.datapool == data_options[1]: #Use val twitter data
159
- df = df.loc[validation_subset_index,:]
160
- df = df.sort_values('score', ascending=False)
161
- df = df.drop_duplicates(subset=['twitterlink'])
162
- best_id_topk = df['idx'].values[:topn]
163
- target_scores = df['score'].values[:topn]
164
- target_weblinks = df['twitterlink'].values[:topn]
165
-
166
-
167
-
168
- ############################################################
169
- # Display results
170
- ############################################################
171
-
172
- st.markdown('#### Top 5 results:')
173
- topk_options = ['1st', '2nd', '3rd', '4th', '5th']
174
- tab = {}
175
- tab[0], tab[1], tab[2] = st.columns(3)
176
- for i in [0,1,2]:
177
- with tab[i]:
178
- topn_value = i
179
- topn_txt = topk_options[i]
180
- st.caption(f'The {topn_txt} relevant image (similarity = {target_scores[topn_value]:.4f})')
181
- components.html('''
182
- <blockquote class="twitter-tweet">
183
- <a href="%s"></a>
184
- </blockquote>
185
- <script async src="https://platform.twitter.com/widgets.js" charset="utf-8">
186
- </script>
187
- ''' % target_weblinks[topn_value],
188
- height=600)
189
-
190
- tab[3], tab[4], tab[5] = st.columns(3)
191
- for i in [3,4]:
192
- with tab[i]:
193
- topn_value = i
194
- topn_txt = topk_options[i]
195
- st.caption(f'The {topn_txt} relevant image (similarity = {target_scores[topn_value]:.4f})')
196
- components.html('''
197
- <blockquote class="twitter-tweet">
198
- <a href="%s"></a>
199
- </blockquote>
200
- <script async src="https://platform.twitter.com/widgets.js" charset="utf-8">
201
- </script>
202
- ''' % target_weblinks[topn_value],
203
- height=800)
204
-
205
-
206
-
207
-
208
-
209
-
210
-
211
-
212
-
213
-
214
- st.markdown("""---""")
215
- st.markdown('Disclaimer')
216
- st.caption('Please be advised that this function has been developed in compliance with the Twitter policy of data usage and sharing. It is important to note that the results obtained from this function are not intended to constitute medical advice or replace consultation with a qualified medical professional. The use of this function is solely at your own risk and should be consistent with applicable laws, regulations, and ethical considerations. We do not warrant or guarantee the accuracy, completeness, suitability, or usefulness of this function for any particular purpose, and we hereby disclaim any liability arising from any reliance placed on this function or any results obtained from its use. If you wish to review the original Twitter post, you should access the source page directly on Twitter.')
217
-
218
- st.markdown('Privacy statement')
219
- st.caption('In accordance with the privacy and control policy of Twitter, we hereby declared that the data redistributed by us shall only comprise of Tweet IDs. The Tweet IDs will be employed to establish a linkage with the original Twitter post, as long as the original post is still accessible. The hyperlink will cease to function if the user deletes the original post. It is important to note that all tweets displayed on our service have already been classified as non-sensitive by Twitter. It is strictly prohibited to redistribute any content apart from the Tweet IDs. Any distribution carried out must adhere to the laws and regulations applicable in your jurisdiction, including export control laws and embargoes.')
220
-
221
-
222
-
223
-
224
-
225
-
226
-
227
-
228
-
229
-
230
-
231
-
232
-
233
-
234
-
235
-
236
-
237
-
238
-
239
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
introduction.md ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+
2
+ # Welcome to our PLIP Demo
plip_support.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import clip
2
+ import torch
3
+
4
+
5
+
6
+
7
+ def embed_text(plip, text, device="cpu"):
8
+ idx = clip.tokenize([text], truncate=True).to(device)
9
+ return plip.encode_text(idx).detach().cpu().numpy()[0]
requirements.txt CHANGED
@@ -1,8 +1,7 @@
1
-
2
- tokenizers
3
- pandas
4
  torch
5
  transformers
6
- st_clickable_images
7
- plotly
8
- altair<5.0
 
 
1
+ git+https://github.com/openai/CLIP.git
 
 
2
  torch
3
  transformers
4
+ pandas
5
+ numpy
6
+ Pillow
7
+ streamlit==1.19.0
resources/4x/Fig1.png DELETED

Git LFS Details

  • SHA256: 84a7d43d4ebef1a392eac1307a6c331488d2f572dee588202868209a511bfe2f
  • Pointer size: 132 Bytes
  • Size of remote file: 6.71 MB
resources/4x/Fig1ab.png DELETED

Git LFS Details

  • SHA256: 8dc787aaa8cb2b331d20773887f28a4e3563dc26b65da07d77960b9858dab402
  • Pointer size: 132 Bytes
  • Size of remote file: 2.73 MB
resources/4x/Fig1c.png DELETED

Git LFS Details

  • SHA256: f4cf8f587491307ec9a31f2fa48b06fb2cf55d7195ea60b94a73105ff036f545
  • Pointer size: 131 Bytes
  • Size of remote file: 265 kB
resources/4x/Fig1d.png DELETED

Git LFS Details

  • SHA256: bce67e2b10d9b1a39fe557b65301fae333ff13b51c0dd40f288d23f50d19be56
  • Pointer size: 131 Bytes
  • Size of remote file: 141 kB
resources/4x/Fig1e.png DELETED

Git LFS Details

  • SHA256: 64c74abe2cb5769fb63917aadd77ced32095ecc539d2d0020ae1acbbb9e088bb
  • Pointer size: 132 Bytes
  • Size of remote file: 3.36 MB
resources/4x/Fig1f.png DELETED

Git LFS Details

  • SHA256: 67140f0a485afe810ef7eba2c0412b9a46dbc796f26aa4c014076323507db4db
  • Pointer size: 131 Bytes
  • Size of remote file: 134 kB
resources/4x/image_retrieval.png DELETED

Git LFS Details

  • SHA256: 688c3eb015a8f8a80e2fe88cd8a73abda0e48e6c11756435702075e9679df0c0
  • Pointer size: 131 Bytes
  • Size of remote file: 619 kB
resources/SVG/.DS_Store DELETED
Binary file (6.15 kB)
 
resources/SVG/Asset 47.svg DELETED

Git LFS Details

  • SHA256: 17528789f96ded033e61ae6e01f5094701b73c310949b8c683c4248f53c42fff
  • Pointer size: 132 Bytes
  • Size of remote file: 3.5 MB
resources/SVG/Asset 48.svg DELETED

Git LFS Details

  • SHA256: a227633cae152764b3fc06f343fc25ec6b2e3c00de6a54cddfa63619e956197b
  • Pointer size: 129 Bytes
  • Size of remote file: 1.38 kB
resources/SVG/Asset 49.svg DELETED

Git LFS Details

  • SHA256: 01a1d5747fb273f8d3da78d08c4ecac7e48d225935f840231727896483dbe79a
  • Pointer size: 132 Bytes
  • Size of remote file: 3.5 MB
resources/SVG/Asset 50.svg DELETED

Git LFS Details

  • SHA256: 42b4f4aaf3f25308b5101abdc1ffd2cfebbeb7cc62ae383dc53af14f11a9dd4b
  • Pointer size: 130 Bytes
  • Size of remote file: 32.9 kB
resources/SVG/Asset 51.svg DELETED

Git LFS Details

  • SHA256: 645e48244d78e3b9a3e17ff194e184691923b7b97c447db0a6268172e169219c
  • Pointer size: 130 Bytes
  • Size of remote file: 39.2 kB
resources/SVG/Asset 52.svg DELETED

Git LFS Details

  • SHA256: 7d72d7b6dd150b27daa12bd6d12e9f9a26cf398e69f086e671b6012755e82c67
  • Pointer size: 133 Bytes
  • Size of remote file: 16.5 MB
resources/SVG/Asset 53.svg DELETED

Git LFS Details

  • SHA256: 24ace0e2cd943a7600f54068b3f4c7a7f9bd8f38c127dd35bbcd6d0d6c9cd61c
  • Pointer size: 129 Bytes
  • Size of remote file: 6.53 kB
resources/SVG/Asset 54.svg DELETED

Git LFS Details

  • SHA256: 0cd24a3441cc695a92c3f78d263a51399c613b5ee8fd45a97ae730b074460398
  • Pointer size: 131 Bytes
  • Size of remote file: 650 kB
resources/example/1.png DELETED

Git LFS Details

  • SHA256: ebd9154b5bf46bf9678665e95408b7376123af742941560208a35980573fabaa
  • Pointer size: 132 Bytes
  • Size of remote file: 1.53 MB
resources/example/2.png DELETED

Git LFS Details

  • SHA256: b18ba27da4efa94c97bd7dc73879de9658c457e2fce8b36596e62b939652d98a
  • Pointer size: 132 Bytes
  • Size of remote file: 1.52 MB
resources/example/3.png DELETED

Git LFS Details

  • SHA256: 98b57a474300100f761326625585dbec868429b43838f9ef9ea7888b957b94ad
  • Pointer size: 132 Bytes
  • Size of remote file: 2.16 MB
text2image.py CHANGED
@@ -1,58 +1,23 @@
1
  import streamlit as st
2
  import pandas as pd
 
3
  import numpy as np
4
  from PIL import Image
5
- import pickle
 
6
  import tokenizers
 
 
 
 
7
  import torch
8
-
9
  from transformers import (
10
-
11
- CLIPModel,
12
- AutoProcessor
13
  )
14
- import streamlit.components.v1 as components
15
- import base64
16
-
17
- def render_svg(svg_filename):
18
- with open(svg_filename,"r") as f:
19
- lines = f.readlines()
20
- svg=''.join(lines)
21
- """Renders the given svg string."""
22
- b64 = base64.b64encode(svg.encode('utf-8')).decode("utf-8")
23
- html = r'<img src="data:image/svg+xml;base64,%s"/>' % b64
24
- st.write(html, unsafe_allow_html=True)
25
-
26
- @st.cache(
27
- hash_funcs={
28
- torch.nn.parameter.Parameter: lambda _: None,
29
- tokenizers.Tokenizer: lambda _: None,
30
- tokenizers.AddedToken: lambda _: None
31
- }
32
- )
33
- def load_path_clip():
34
- model = CLIPModel.from_pretrained("vinid/plip")
35
- processor = AutoProcessor.from_pretrained("vinid/plip")
36
- return model, processor
37
 
38
- @st.cache
39
- def init():
40
- with open('data/twitter.asset', 'rb') as f:
41
- data = pickle.load(f)
42
- meta = data['meta'].reset_index(drop=True)
43
- image_embedding = data['image_embedding']
44
- text_embedding = data['text_embedding']
45
- print(meta.shape, image_embedding.shape)
46
- validation_subset_index = meta['source'].values == 'Val_Tweets'
47
- return meta, image_embedding, text_embedding, validation_subset_index
48
-
49
- def embed_images(model, images, processor):
50
- inputs = processor(images=images)
51
- pixel_values = torch.tensor(np.array(inputs["pixel_values"]))
52
-
53
- with torch.no_grad():
54
- embeddings = model.get_image_features(pixel_values=pixel_values)
55
- return embeddings
56
 
57
  def embed_texts(model, texts, processor):
58
  inputs = processor(text=texts, padding="longest")
@@ -65,162 +30,45 @@ def embed_texts(model, texts, processor):
65
  )
66
  return embeddings
67
 
 
 
 
 
68
 
69
- def app():
70
-
71
- st.title('Text to Image Retrieval')
72
- st.markdown('#### A pathology image search engine that geos from texts to images.')
73
-
74
- col1, col2 = st.columns([1,1])
75
- with col1:
76
- st.markdown("The text-to-image retrieval system can serve as an image search engine, enabling users to match images from multiple queries and retrieve the most relevant image based on a sentence description. This generic system can comprehend semantic and interrelated knowledge, such as β€œBreast tumor surrounded by fat”.")
77
- st.markdown("Unlike searching keywords and sentences from Google and indirectly matching the images from the target text, our proposed pathology image retrieval allows direct comparison between input sentences and images.")
78
- with col2:
79
- render_svg("resources/SVG/Asset 54.svg")
80
-
81
- meta, image_embedding, text_embedding, validation_subset_index = init()
82
- model, processor = load_path_clip()
83
-
84
- st.markdown('### Search')
85
- st.markdown('How to use this: first of all, select a dataset on which to do retrieval.\n'
86
- 'Then, either select a predefined search query or input one yourself.')
87
-
88
-
89
- col1, col2 = st.columns(2)
90
- with col1:
91
- data_options = ["All Twitter Data (03/21/2006 β€” 01/15/2023)",
92
- "Validation Twitter data (11/16/2022 β€” 01/15/2023)"]
93
- st.selectbox(
94
- "Dataset",
95
- key="datapool",
96
- options=data_options,
97
- )
98
-
99
- with col2:
100
- retrieval_options = ["Image only",
101
- "Text and image (beta)",
102
- ]
103
- st.radio(
104
- "Similarity calcuation πŸ‘‰",
105
- key="calculation_option",
106
- options=retrieval_options,
107
- )
108
-
109
- col1, col2 = st.columns(2)
110
-
111
- with col1:
112
- # Create selectbox
113
- examples = ['Breast tumor surrounded by fat',
114
- 'HER2+ breast tumor',
115
- 'Colorectal cancer tumor on epithelium',
116
- 'An image of endometrium epithelium',
117
- 'Breast cancer DCIS',
118
- 'Papillary carcinoma in breast tissue',
119
- ]
120
- query_1 = st.selectbox("Select an example", options=examples)
121
-
122
- col1_submit = True
123
-
124
- with col2:
125
- form = st.form(key='my_form')
126
- query_2 = form.text_input(label='Or input your custom query:')
127
- submit_button = form.form_submit_button(label='Submit')
128
-
129
- if submit_button:
130
- col1_submit = False
131
-
132
- if col1_submit:
133
- query = query_1
134
- else:
135
- query = query_2
136
-
137
- input_text = embed_texts(model, [query], processor)[0].detach().cpu().numpy()
138
- input_text = input_text/np.linalg.norm(input_text)
139
-
140
- # Sort IDs by cosine-similarity from high to low
141
-
142
- if st.session_state.calculation_option == retrieval_options[0]: # Image only
143
- similarity_scores = input_text.dot(image_embedding.T)
144
- else: # Text and Image
145
- similarity_scores_i = input_text.dot(image_embedding.T)
146
- similarity_scores_t = input_text.dot(text_embedding.T)
147
- similarity_scores_i = similarity_scores_i / np.max(similarity_scores_i)
148
- similarity_scores_t = similarity_scores_t / np.max(similarity_scores_t)
149
- similarity_scores = (similarity_scores_i + similarity_scores_t) / 2
150
-
151
- ############################################################
152
- # Get top results
153
- ############################################################
154
- topn = 5
155
- df = pd.DataFrame(np.c_[np.arange(len(meta)), similarity_scores, meta['weblink'].values], columns = ['idx', 'score', 'twitterlink'])
156
- if st.session_state.datapool == data_options[1]: #Use val twitter data
157
- df = df.loc[validation_subset_index,:]
158
- df = df.sort_values('score', ascending=False)
159
- df = df.drop_duplicates(subset=['twitterlink'])
160
- best_id_topk = df['idx'].values[:topn]
161
- target_scores = df['score'].values[:topn]
162
- target_weblinks = df['twitterlink'].values[:topn]
163
-
164
-
165
- ############################################################
166
- # Display results
167
- ############################################################
168
-
169
- text = '<font size="4">Your input query: <span style="background-color: rgb(230,230,230);"><b>%s</b></span>' % query + \
170
- ' (Try search it directly on [Twitter](https://twitter.com/search?q=%s&src=typed_query) or [Google](https://www.google.com/search?q=%s))</font>' % (query.replace(' ', '%20'), query.replace(' ', '+'))
171
- st.markdown(text, unsafe_allow_html=True)
172
-
173
- st.markdown('#### Top 5 results:')
174
- topk_options = ['1st', '2nd', '3rd', '4th', '5th']
175
- tab = {}
176
- tab[0], tab[1], tab[2] = st.columns(3)
177
- for i in [0,1,2]:
178
- with tab[i]:
179
- topn_value = i
180
- topn_txt = topk_options[i]
181
- st.caption(f'The {topn_txt} relevant image (similarity = {target_scores[topn_value]:.4f})')
182
- components.html('''
183
- <blockquote class="twitter-tweet">
184
- <a href="%s"></a>
185
- </blockquote>
186
- <script async src="https://platform.twitter.com/widgets.js" charset="utf-8">
187
- </script>
188
- ''' % target_weblinks[topn_value],
189
- height=600)
190
-
191
- tab[3], tab[4], tab[5] = st.columns(3)
192
- for i in [3,4]:
193
- with tab[i]:
194
- topn_value = i
195
- topn_txt = topk_options[i]
196
- st.caption(f'The {topn_txt} relevant image (similarity = {target_scores[topn_value]:.4f})')
197
- components.html('''
198
- <blockquote class="twitter-tweet">
199
- <a href="%s"></a>
200
- </blockquote>
201
- <script async src="https://platform.twitter.com/widgets.js" charset="utf-8">
202
- </script>
203
- ''' % target_weblinks[topn_value],
204
- height=800)
205
-
206
-
207
-
208
- st.markdown("""---""")
209
- st.markdown('Disclaimer')
210
- st.caption('Please be advised that this function has been developed in compliance with the Twitter policy of data usage and sharing. It is important to note that the results obtained from this function are not intended to constitute medical advice or replace consultation with a qualified medical professional. The use of this function is solely at your own risk and should be consistent with applicable laws, regulations, and ethical considerations. We do not warrant or guarantee the accuracy, completeness, suitability, or usefulness of this function for any particular purpose, and we hereby disclaim any liability arising from any reliance placed on this function or any results obtained from its use. If you wish to review the original Twitter post, you should access the source page directly on Twitter.')
211
-
212
- st.markdown('Privacy statement')
213
- st.caption('In accordance with the privacy and control policy of Twitter, we hereby declared that the data redistributed by us shall only comprise of Tweet IDs. The Tweet IDs will be employed to establish a linkage with the original Twitter post, as long as the original post is still accessible. The hyperlink will cease to function if the user deletes the original post. It is important to note that all tweets displayed on our service have already been classified as non-sensitive by Twitter. It is strictly prohibited to redistribute any content apart from the Tweet IDs. Any distribution carried out must adhere to the laws and regulations applicable in your jurisdiction, including export control laws and embargoes.')
214
-
215
 
216
 
 
 
217
 
 
218
 
 
219
 
 
220
 
 
221
 
222
 
 
223
 
 
224
 
 
225
 
 
 
226
 
 
 
 
 
1
  import streamlit as st
2
  import pandas as pd
3
+ from plip_support import embed_text
4
  import numpy as np
5
  from PIL import Image
6
+ import requests
7
+ import transformers
8
  import tokenizers
9
+ from io import BytesIO
10
+ import streamlit as st
11
+ from transformers import CLIPModel
12
+ import clip
13
  import torch
 
14
  from transformers import (
15
+ VisionTextDualEncoderModel,
16
+ AutoFeatureExtractor,
17
+ AutoTokenizer
18
  )
19
+ from transformers import AutoProcessor
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  def embed_texts(model, texts, processor):
23
  inputs = processor(text=texts, padding="longest")
 
30
  )
31
  return embeddings
32
 
33
+ @st.cache
34
+ def load_embeddings(embeddings_path):
35
+ print("loading embeddings")
36
+ return np.load(embeddings_path)
37
 
38
+ @st.cache(
39
+ hash_funcs={
40
+ torch.nn.parameter.Parameter: lambda _: None,
41
+ tokenizers.Tokenizer: lambda _: None,
42
+ tokenizers.AddedToken: lambda _: None
43
+ }
44
+ )
45
+ def load_path_clip():
46
+ model = CLIPModel.from_pretrained("vinid/plip")
47
+ processor = AutoProcessor.from_pretrained("vinid/plip")
48
+ return model, processor
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
 
51
+ def app():
52
+ st.title('PLIP Image Search')
53
 
54
+ plip_dataset = pd.read_csv("tweet_eval_retrieval.tsv", sep="\t")
55
 
56
+ model, processor = load_path_clip()
57
 
58
+ image_embedding = load_embeddings("tweet_eval_embeddings.npy")
59
 
60
+ query = st.text_input('Search Query', '')
61
 
62
 
63
+ if query:
64
 
65
+ text_embedding = embed_texts(model, [query], processor)[0].detach().cpu().numpy()
66
 
67
+ text_embedding = text_embedding/np.linalg.norm(text_embedding)
68
 
69
+ best_id = np.argmax(text_embedding.dot(image_embedding.T))
70
+ url = (plip_dataset.iloc[best_id]["imageURL"])
71
 
72
+ response = requests.get(url)
73
+ img = Image.open(BytesIO(response.content))
74
+ st.image(img)
data/example_images/Books_0f25e3de-2c23-46df-ac67-b7bcddd5e1e6.png β†’ tweet_eval_embeddings.npy RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bf7d4b43c2bcb233b4869c142c9872efb557888091682d7030a016e47dc0d95c
3
- size 554136
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36e445b069b1d937a0a780ddeab9239df5fd13264e8cd1f6cf033be3210352e1
3
+ size 2401408
tweet_eval_retrieval.tsv ADDED
The diff for this file is too large to render. See raw diff