|
# MelGAN STFT: MelGAN With Multi Resolution STFT Loss |
|
Based on the script [`train_melgan_stft.py`](https://github.com/tensorspeech/TensorFlowTTS/tree/master/examples/melgan_stft/train_melgan_stft.py). |
|
|
|
## Training MelGAN STFT from scratch with LJSpeech dataset. |
|
This example code show you how to train MelGAN from scratch with Tensorflow 2 based on custom training loop and tf.function. The data used for this example is LJSpeech, you can download the dataset at [link](https://keithito.com/LJ-Speech-Dataset/). |
|
|
|
### Step 1: Create Tensorflow based Dataloader (tf.dataset) |
|
Please see detail at [examples/melgan/](https://github.com/tensorspeech/TensorFlowTTS/tree/master/examples/melgan#step-1-create-tensorflow-based-dataloader-tfdataset) |
|
|
|
### Step 2: Training from scratch |
|
After you re-define your dataloader, pls modify an input arguments, train_dataset and valid_dataset from [`train_melgan_stft.py`](https://github.com/tensorspeech/TensorFlowTTS/tree/master/examples/melgan_stft/train_melgan_stft.py). Here is an example command line to training melgan-stft from scratch: |
|
|
|
First, you need training generator with only stft loss: |
|
|
|
```bash |
|
CUDA_VISIBLE_DEVICES=0 python examples/melgan_stft/train_melgan_stft.py \ |
|
--train-dir ./dump/train/ \ |
|
--dev-dir ./dump/valid/ \ |
|
--outdir ./examples/melgan_stft/exp/train.melgan_stft.v1/ \ |
|
--config ./examples/melgan_stft/conf/melgan_stft.v1.yaml \ |
|
--use-norm 1 |
|
--generator_mixed_precision 1 \ |
|
--resume "" |
|
``` |
|
|
|
Then resume and start training generator + discriminator: |
|
|
|
```bash |
|
CUDA_VISIBLE_DEVICES=0 python examples/melgan_stft/train_melgan_stft.py \ |
|
--train-dir ./dump/train/ \ |
|
--dev-dir ./dump/valid/ \ |
|
--outdir ./examples/melgan_stft/exp/train.melgan_stft.v1/ \ |
|
--config ./examples/melgan_stft/conf/melgan_stft.v1.yaml \ |
|
--use-norm 1 |
|
--resume ./examples/melgan_stft/exp/train.melgan_stft.v1/checkpoints/ckpt-100000 |
|
``` |
|
|
|
IF you want to use MultiGPU to training you can replace `CUDA_VISIBLE_DEVICES=0` by `CUDA_VISIBLE_DEVICES=0,1,2,3` for example. You also need to tune the `batch_size` for each GPU (in config file) by yourself to maximize the performance. Note that MultiGPU now support for Training but not yet support for Decode. |
|
|
|
In case you want to resume the training progress, please following below example command line: |
|
|
|
```bash |
|
--resume ./examples/melgan_stft/exp/train.melgan_stft.v1/checkpoints/ckpt-100000 |
|
``` |
|
|
|
If you want to finetune a model, use `--pretrained` like this with the filename of the generator |
|
```bash |
|
--pretrained ptgenerator.h5 |
|
``` |
|
|
|
**IMPORTANT NOTES**: |
|
|
|
- When training generator only, we enable mixed precision to speed-up training progress. |
|
- We don't apply mixed precision when training both generator and discriminator. (Discriminator include group-convolution, which cause discriminator slower when enable mixed precision). |
|
- 100k here is a *discriminator_train_start_steps* parameters from [melgan_stft.v1.yaml](https://github.com/tensorspeech/TensorflowTTS/tree/master/examples/melgan_stft/conf/melgan_stft.v1.yaml) |
|
|
|
|
|
## Finetune MelGAN STFT with ljspeech pretrained on other languages |
|
Just load pretrained model and training from scratch with other languages. **DO NOT FORGET** re-preprocessing on your dataset if needed. A hop_size should be 256 if you want to use our pretrained. |
|
|
|
## Learning Curves |
|
Here is a learning curves of melgan based on this config [`melgan_stft.v1.yaml`](https://github.com/tensorspeech/TensorflowTTS/tree/master/examples/melgan_stft/conf/melgan_stft.v1.yaml) |
|
|
|
<img src="fig/melgan.stft.v1.eval.png" height="300" width="850"> |
|
|
|
<img src="fig/melgan.stft.v1.train.png" height="300" width="850"> |
|
|
|
## Some important notes |
|
|
|
* We apply learning rate = 1e-3 when training generator only then apply lr = 1e-4 for both G and D. |
|
* See [examples/melgan](https://github.com/tensorspeech/TensorFlowTTS/tree/master/examples/melgan#some-important-notes) for more notes. |
|
|
|
## Pretrained Models and Audio samples |
|
| Model | Conf | Lang | Fs [Hz] | Mel range [Hz] | FFT / Hop / Win [pt] | # iters | |
|
| :------ | :---: | :---: | :----: | :--------: | :---------------: | :-----: | |
|
| [melgan_stft.v1](https://drive.google.com/drive/folders/1xUkDjbciupEkM3N4obiJAYySTo6J9z6b?usp=sharing) | [link](https://github.com/tensorspeech/TensorFlowTTS/tree/master/examples/melgan_stft/conf/melgan_stft.v1.yaml) | EN | 22.05k | 80-7600 | 1024 / 256 / None | 1900k | |
|
|
|
|
|
## Reference |
|
|
|
1. https://github.com/descriptinc/melgan-neurips |
|
2. https://github.com/kan-bayashi/ParallelWaveGAN |
|
3. https://github.com/tensorflow/addons |
|
4. [MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis](https://arxiv.org/abs/1910.06711) |
|
5. [Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram](https://arxiv.org/abs/1910.11480) |