daquanzhou
merge github repos and lfs track ckpt/path/safetensors/pt
613c9ab
raw
history blame
22.5 kB
import impact.core as core
from impact.config import MAX_RESOLUTION
import impact.segs_nodes as segs_nodes
import impact.utils as utils
import torch
from impact.core import SEG
class SAMDetectorCombined:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"sam_model": ("SAM_MODEL", ),
"segs": ("SEGS", ),
"image": ("IMAGE", ),
"detection_hint": (["center-1", "horizontal-2", "vertical-2", "rect-4", "diamond-4", "mask-area",
"mask-points", "mask-point-bbox", "none"],),
"dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
"threshold": ("FLOAT", {"default": 0.93, "min": 0.0, "max": 1.0, "step": 0.01}),
"bbox_expansion": ("INT", {"default": 0, "min": 0, "max": 1000, "step": 1}),
"mask_hint_threshold": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
"mask_hint_use_negative": (["False", "Small", "Outter"], )
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detector"
def doit(self, sam_model, segs, image, detection_hint, dilation,
threshold, bbox_expansion, mask_hint_threshold, mask_hint_use_negative):
return (core.make_sam_mask(sam_model, segs, image, detection_hint, dilation,
threshold, bbox_expansion, mask_hint_threshold, mask_hint_use_negative), )
class SAMDetectorSegmented:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"sam_model": ("SAM_MODEL", ),
"segs": ("SEGS", ),
"image": ("IMAGE", ),
"detection_hint": (["center-1", "horizontal-2", "vertical-2", "rect-4", "diamond-4", "mask-area",
"mask-points", "mask-point-bbox", "none"],),
"dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
"threshold": ("FLOAT", {"default": 0.93, "min": 0.0, "max": 1.0, "step": 0.01}),
"bbox_expansion": ("INT", {"default": 0, "min": 0, "max": 1000, "step": 1}),
"mask_hint_threshold": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
"mask_hint_use_negative": (["False", "Small", "Outter"], )
}
}
RETURN_TYPES = ("MASK", "MASK")
RETURN_NAMES = ("combined_mask", "batch_masks")
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detector"
def doit(self, sam_model, segs, image, detection_hint, dilation,
threshold, bbox_expansion, mask_hint_threshold, mask_hint_use_negative):
combined_mask, batch_masks = core.make_sam_mask_segmented(sam_model, segs, image, detection_hint, dilation,
threshold, bbox_expansion, mask_hint_threshold,
mask_hint_use_negative)
return (combined_mask, batch_masks, )
class BboxDetectorForEach:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"bbox_detector": ("BBOX_DETECTOR", ),
"image": ("IMAGE", ),
"threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"dilation": ("INT", {"default": 10, "min": -512, "max": 512, "step": 1}),
"crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 100, "step": 0.1}),
"drop_size": ("INT", {"min": 1, "max": MAX_RESOLUTION, "step": 1, "default": 10}),
"labels": ("STRING", {"multiline": True, "default": "all", "placeholder": "List the types of segments to be allowed, separated by commas"}),
},
"optional": {"detailer_hook": ("DETAILER_HOOK",), }
}
RETURN_TYPES = ("SEGS", )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detector"
def doit(self, bbox_detector, image, threshold, dilation, crop_factor, drop_size, labels=None, detailer_hook=None):
if len(image) > 1:
raise Exception('[Impact Pack] ERROR: BboxDetectorForEach does not allow image batches.\nPlease refer to https://github.com/ltdrdata/ComfyUI-extension-tutorials/blob/Main/ComfyUI-Impact-Pack/tutorial/batching-detailer.md for more information.')
segs = bbox_detector.detect(image, threshold, dilation, crop_factor, drop_size, detailer_hook)
if labels is not None and labels != '':
labels = labels.split(',')
if len(labels) > 0:
segs, _ = segs_nodes.SEGSLabelFilter.filter(segs, labels)
return (segs, )
class SegmDetectorForEach:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"segm_detector": ("SEGM_DETECTOR", ),
"image": ("IMAGE", ),
"threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"dilation": ("INT", {"default": 10, "min": -512, "max": 512, "step": 1}),
"crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 100, "step": 0.1}),
"drop_size": ("INT", {"min": 1, "max": MAX_RESOLUTION, "step": 1, "default": 10}),
"labels": ("STRING", {"multiline": True, "default": "all", "placeholder": "List the types of segments to be allowed, separated by commas"}),
},
"optional": {"detailer_hook": ("DETAILER_HOOK",), }
}
RETURN_TYPES = ("SEGS", )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detector"
def doit(self, segm_detector, image, threshold, dilation, crop_factor, drop_size, labels=None, detailer_hook=None):
if len(image) > 1:
raise Exception('[Impact Pack] ERROR: SegmDetectorForEach does not allow image batches.\nPlease refer to https://github.com/ltdrdata/ComfyUI-extension-tutorials/blob/Main/ComfyUI-Impact-Pack/tutorial/batching-detailer.md for more information.')
segs = segm_detector.detect(image, threshold, dilation, crop_factor, drop_size, detailer_hook)
if labels is not None and labels != '':
labels = labels.split(',')
if len(labels) > 0:
segs, _ = segs_nodes.SEGSLabelFilter.filter(segs, labels)
return (segs, )
class SegmDetectorCombined:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"segm_detector": ("SEGM_DETECTOR", ),
"image": ("IMAGE", ),
"threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
}
}
RETURN_TYPES = ("MASK",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detector"
def doit(self, segm_detector, image, threshold, dilation):
mask = segm_detector.detect_combined(image, threshold, dilation)
return (mask,)
class BboxDetectorCombined(SegmDetectorCombined):
@classmethod
def INPUT_TYPES(s):
return {"required": {
"bbox_detector": ("BBOX_DETECTOR", ),
"image": ("IMAGE", ),
"threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"dilation": ("INT", {"default": 4, "min": -512, "max": 512, "step": 1}),
}
}
def doit(self, bbox_detector, image, threshold, dilation):
mask = bbox_detector.detect_combined(image, threshold, dilation)
return (mask,)
class SimpleDetectorForEach:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"bbox_detector": ("BBOX_DETECTOR", ),
"image": ("IMAGE", ),
"bbox_threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"bbox_dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
"crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 100, "step": 0.1}),
"drop_size": ("INT", {"min": 1, "max": MAX_RESOLUTION, "step": 1, "default": 10}),
"sub_threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"sub_dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
"sub_bbox_expansion": ("INT", {"default": 0, "min": 0, "max": 1000, "step": 1}),
"sam_mask_hint_threshold": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
},
"optional": {
"post_dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
"sam_model_opt": ("SAM_MODEL", ),
"segm_detector_opt": ("SEGM_DETECTOR", ),
}
}
RETURN_TYPES = ("SEGS",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detector"
@staticmethod
def detect(bbox_detector, image, bbox_threshold, bbox_dilation, crop_factor, drop_size,
sub_threshold, sub_dilation, sub_bbox_expansion,
sam_mask_hint_threshold, post_dilation=0, sam_model_opt=None, segm_detector_opt=None,
detailer_hook=None):
if len(image) > 1:
raise Exception('[Impact Pack] ERROR: SimpleDetectorForEach does not allow image batches.\nPlease refer to https://github.com/ltdrdata/ComfyUI-extension-tutorials/blob/Main/ComfyUI-Impact-Pack/tutorial/batching-detailer.md for more information.')
segs = bbox_detector.detect(image, bbox_threshold, bbox_dilation, crop_factor, drop_size, detailer_hook=detailer_hook)
if sam_model_opt is not None:
mask = core.make_sam_mask(sam_model_opt, segs, image, "center-1", sub_dilation,
sub_threshold, sub_bbox_expansion, sam_mask_hint_threshold, False)
segs = core.segs_bitwise_and_mask(segs, mask)
elif segm_detector_opt is not None:
segm_segs = segm_detector_opt.detect(image, sub_threshold, sub_dilation, crop_factor, drop_size, detailer_hook=detailer_hook)
mask = core.segs_to_combined_mask(segm_segs)
segs = core.segs_bitwise_and_mask(segs, mask)
segs = core.dilate_segs(segs, post_dilation)
return (segs,)
def doit(self, bbox_detector, image, bbox_threshold, bbox_dilation, crop_factor, drop_size,
sub_threshold, sub_dilation, sub_bbox_expansion,
sam_mask_hint_threshold, post_dilation=0, sam_model_opt=None, segm_detector_opt=None):
return SimpleDetectorForEach.detect(bbox_detector, image, bbox_threshold, bbox_dilation, crop_factor, drop_size,
sub_threshold, sub_dilation, sub_bbox_expansion,
sam_mask_hint_threshold, post_dilation=post_dilation,
sam_model_opt=sam_model_opt, segm_detector_opt=segm_detector_opt)
class SimpleDetectorForEachPipe:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"detailer_pipe": ("DETAILER_PIPE", ),
"image": ("IMAGE", ),
"bbox_threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"bbox_dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
"crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 100, "step": 0.1}),
"drop_size": ("INT", {"min": 1, "max": MAX_RESOLUTION, "step": 1, "default": 10}),
"sub_threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"sub_dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
"sub_bbox_expansion": ("INT", {"default": 0, "min": 0, "max": 1000, "step": 1}),
"sam_mask_hint_threshold": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
},
"optional": {
"post_dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
}
}
RETURN_TYPES = ("SEGS",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detector"
def doit(self, detailer_pipe, image, bbox_threshold, bbox_dilation, crop_factor, drop_size,
sub_threshold, sub_dilation, sub_bbox_expansion, sam_mask_hint_threshold, post_dilation=0):
if len(image) > 1:
raise Exception('[Impact Pack] ERROR: SimpleDetectorForEach does not allow image batches.\nPlease refer to https://github.com/ltdrdata/ComfyUI-extension-tutorials/blob/Main/ComfyUI-Impact-Pack/tutorial/batching-detailer.md for more information.')
model, clip, vae, positive, negative, wildcard, bbox_detector, segm_detector_opt, sam_model_opt, detailer_hook, refiner_model, refiner_clip, refiner_positive, refiner_negative = detailer_pipe
return SimpleDetectorForEach.detect(bbox_detector, image, bbox_threshold, bbox_dilation, crop_factor, drop_size,
sub_threshold, sub_dilation, sub_bbox_expansion,
sam_mask_hint_threshold, post_dilation=post_dilation, sam_model_opt=sam_model_opt, segm_detector_opt=segm_detector_opt,
detailer_hook=detailer_hook)
class SimpleDetectorForAnimateDiff:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"bbox_detector": ("BBOX_DETECTOR", ),
"image_frames": ("IMAGE", ),
"bbox_threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"bbox_dilation": ("INT", {"default": 0, "min": -255, "max": 255, "step": 1}),
"crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 100, "step": 0.1}),
"drop_size": ("INT", {"min": 1, "max": MAX_RESOLUTION, "step": 1, "default": 10}),
"sub_threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"sub_dilation": ("INT", {"default": 0, "min": -255, "max": 255, "step": 1}),
"sub_bbox_expansion": ("INT", {"default": 0, "min": 0, "max": 1000, "step": 1}),
"sam_mask_hint_threshold": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
},
"optional": {
"masking_mode": (["Pivot SEGS", "Combine neighboring frames", "Don't combine"],),
"segs_pivot": (["Combined mask", "1st frame mask"],),
"sam_model_opt": ("SAM_MODEL", ),
"segm_detector_opt": ("SEGM_DETECTOR", ),
}
}
RETURN_TYPES = ("SEGS",)
FUNCTION = "doit"
CATEGORY = "ImpactPack/Detector"
@staticmethod
def detect(bbox_detector, image_frames, bbox_threshold, bbox_dilation, crop_factor, drop_size,
sub_threshold, sub_dilation, sub_bbox_expansion, sam_mask_hint_threshold,
masking_mode="Pivot SEGS", segs_pivot="Combined mask", sam_model_opt=None, segm_detector_opt=None):
h = image_frames.shape[1]
w = image_frames.shape[2]
# gather segs for all frames
segs_by_frames = []
for image in image_frames:
image = image.unsqueeze(0)
segs = bbox_detector.detect(image, bbox_threshold, bbox_dilation, crop_factor, drop_size)
if sam_model_opt is not None:
mask = core.make_sam_mask(sam_model_opt, segs, image, "center-1", sub_dilation,
sub_threshold, sub_bbox_expansion, sam_mask_hint_threshold, False)
segs = core.segs_bitwise_and_mask(segs, mask)
elif segm_detector_opt is not None:
segm_segs = segm_detector_opt.detect(image, sub_threshold, sub_dilation, crop_factor, drop_size)
mask = core.segs_to_combined_mask(segm_segs)
segs = core.segs_bitwise_and_mask(segs, mask)
segs_by_frames.append(segs)
def get_masked_frames():
masks_by_frame = []
for i, segs in enumerate(segs_by_frames):
masks_in_frame = segs_nodes.SEGSToMaskList().doit(segs)[0]
current_frame_mask = (masks_in_frame[0] * 255).to(torch.uint8)
for mask in masks_in_frame[1:]:
current_frame_mask |= (mask * 255).to(torch.uint8)
current_frame_mask = (current_frame_mask/255.0).to(torch.float32)
current_frame_mask = utils.to_binary_mask(current_frame_mask, 0.1)[0]
masks_by_frame.append(current_frame_mask)
return masks_by_frame
def get_empty_mask():
return torch.zeros((h, w), dtype=torch.float32, device="cpu")
def get_neighboring_mask_at(i, masks_by_frame):
prv = masks_by_frame[i-1] if i > 1 else get_empty_mask()
cur = masks_by_frame[i]
nxt = masks_by_frame[i-1] if i > 1 else get_empty_mask()
prv = prv if prv is not None else get_empty_mask()
cur = cur.clone() if cur is not None else get_empty_mask()
nxt = nxt if nxt is not None else get_empty_mask()
return prv, cur, nxt
def get_merged_neighboring_mask(masks_by_frame):
if len(masks_by_frame) <= 1:
return masks_by_frame
result = []
for i in range(0, len(masks_by_frame)):
prv, cur, nxt = get_neighboring_mask_at(i, masks_by_frame)
cur = (cur * 255).to(torch.uint8)
cur |= (prv * 255).to(torch.uint8)
cur |= (nxt * 255).to(torch.uint8)
cur = (cur / 255.0).to(torch.float32)
cur = utils.to_binary_mask(cur, 0.1)[0]
result.append(cur)
return result
def get_whole_merged_mask():
all_masks = []
for segs in segs_by_frames:
all_masks += segs_nodes.SEGSToMaskList().doit(segs)[0]
merged_mask = (all_masks[0] * 255).to(torch.uint8)
for mask in all_masks[1:]:
merged_mask |= (mask * 255).to(torch.uint8)
merged_mask = (merged_mask / 255.0).to(torch.float32)
merged_mask = utils.to_binary_mask(merged_mask, 0.1)[0]
return merged_mask
def get_pivot_segs():
if segs_pivot == "1st frame mask":
return segs_by_frames[0][1]
else:
merged_mask = get_whole_merged_mask()
return segs_nodes.MaskToSEGS().doit(merged_mask, False, crop_factor, False, drop_size, contour_fill=True)[0]
def get_merged_neighboring_segs():
pivot_segs = get_pivot_segs()
masks_by_frame = get_masked_frames()
masks_by_frame = get_merged_neighboring_mask(masks_by_frame)
new_segs = []
for seg in pivot_segs[1]:
cropped_mask = torch.zeros(seg.cropped_mask.shape, dtype=torch.float32, device="cpu").unsqueeze(0)
pivot_mask = torch.from_numpy(seg.cropped_mask)
x1, y1, x2, y2 = seg.crop_region
for mask in masks_by_frame:
cropped_mask_at_frame = (mask[y1:y2, x1:x2] * pivot_mask).unsqueeze(0)
cropped_mask = torch.cat((cropped_mask, cropped_mask_at_frame), dim=0)
if len(cropped_mask) > 1:
cropped_mask = cropped_mask[1:]
new_seg = SEG(seg.cropped_image, cropped_mask, seg.confidence, seg.crop_region, seg.bbox, seg.label, seg.control_net_wrapper)
new_segs.append(new_seg)
return pivot_segs[0], new_segs
def get_separated_segs():
pivot_segs = get_pivot_segs()
masks_by_frame = get_masked_frames()
new_segs = []
for seg in pivot_segs[1]:
cropped_mask = torch.zeros(seg.cropped_mask.shape, dtype=torch.float32, device="cpu").unsqueeze(0)
x1, y1, x2, y2 = seg.crop_region
for mask in masks_by_frame:
cropped_mask_at_frame = mask[y1:y2, x1:x2]
cropped_mask = torch.cat((cropped_mask, cropped_mask_at_frame), dim=0)
new_seg = SEG(seg.cropped_image, cropped_mask, seg.confidence, seg.crop_region, seg.bbox, seg.label, seg.control_net_wrapper)
new_segs.append(new_seg)
return pivot_segs[0], new_segs
# create result mask
if masking_mode == "Pivot SEGS":
return (get_pivot_segs(), )
elif masking_mode == "Combine neighboring frames":
return (get_merged_neighboring_segs(), )
else: # elif masking_mode == "Don't combine":
return (get_separated_segs(), )
def doit(self, bbox_detector, image_frames, bbox_threshold, bbox_dilation, crop_factor, drop_size,
sub_threshold, sub_dilation, sub_bbox_expansion, sam_mask_hint_threshold,
masking_mode="Pivot SEGS", segs_pivot="Combined mask", sam_model_opt=None, segm_detector_opt=None):
return SimpleDetectorForAnimateDiff.detect(bbox_detector, image_frames, bbox_threshold, bbox_dilation, crop_factor, drop_size,
sub_threshold, sub_dilation, sub_bbox_expansion, sam_mask_hint_threshold,
masking_mode, segs_pivot, sam_model_opt, segm_detector_opt)