daquanzhou
merge github repos and lfs track ckpt/path/safetensors/pt
613c9ab
raw
history blame
14.3 kB
import re
import random
import os
import nodes
import folder_paths
import yaml
import numpy as np
import threading
from impact import utils
wildcard_lock = threading.Lock()
wildcard_dict = {}
def get_wildcard_list():
with wildcard_lock:
return [f"__{x}__" for x in wildcard_dict.keys()]
def get_wildcard_dict():
global wildcard_dict
with wildcard_lock:
return wildcard_dict
def wildcard_normalize(x):
return x.replace("\\", "/").lower()
def read_wildcard(k, v):
if isinstance(v, list):
k = wildcard_normalize(k)
wildcard_dict[k] = v
elif isinstance(v, dict):
for k2, v2 in v.items():
new_key = f"{k}/{k2}"
new_key = wildcard_normalize(new_key)
read_wildcard(new_key, v2)
def read_wildcard_dict(wildcard_path):
global wildcard_dict
for root, directories, files in os.walk(wildcard_path, followlinks=True):
for file in files:
if file.endswith('.txt'):
file_path = os.path.join(root, file)
rel_path = os.path.relpath(file_path, wildcard_path)
key = os.path.splitext(rel_path)[0].replace('\\', '/').lower()
try:
with open(file_path, 'r', encoding="ISO-8859-1") as f:
lines = f.read().splitlines()
wildcard_dict[key] = lines
except UnicodeDecodeError:
with open(file_path, 'r', encoding="UTF-8", errors="ignore") as f:
lines = f.read().splitlines()
wildcard_dict[key] = lines
elif file.endswith('.yaml'):
file_path = os.path.join(root, file)
with open(file_path, 'r') as f:
yaml_data = yaml.load(f, Loader=yaml.FullLoader)
for k, v in yaml_data.items():
read_wildcard(k, v)
return wildcard_dict
def process(text, seed=None):
if seed is not None:
random.seed(seed)
random_gen = np.random.default_rng(seed)
def replace_options(string):
replacements_found = False
def replace_option(match):
nonlocal replacements_found
options = match.group(1).split('|')
multi_select_pattern = options[0].split('$$')
select_range = None
select_sep = ' '
range_pattern = r'(\d+)(-(\d+))?'
range_pattern2 = r'-(\d+)'
if len(multi_select_pattern) > 1:
r = re.match(range_pattern, options[0])
if r is None:
r = re.match(range_pattern2, options[0])
a = '1'
b = r.group(1).strip()
else:
a = r.group(1).strip()
b = r.group(3)
if b is not None:
b = b.strip()
if r is not None:
if b is not None and is_numeric_string(a) and is_numeric_string(b):
# PATTERN: num1-num2
select_range = int(a), int(b)
elif is_numeric_string(a):
# PATTERN: num
x = int(a)
select_range = (x, x)
if select_range is not None and len(multi_select_pattern) == 2:
# PATTERN: count$$
options[0] = multi_select_pattern[1]
elif select_range is not None and len(multi_select_pattern) == 3:
# PATTERN: count$$ sep $$
select_sep = multi_select_pattern[1]
options[0] = multi_select_pattern[2]
adjusted_probabilities = []
total_prob = 0
for option in options:
parts = option.split('::', 1)
if len(parts) == 2 and is_numeric_string(parts[0].strip()):
config_value = float(parts[0].strip())
else:
config_value = 1 # Default value if no configuration is provided
adjusted_probabilities.append(config_value)
total_prob += config_value
normalized_probabilities = [prob / total_prob for prob in adjusted_probabilities]
if select_range is None:
select_count = 1
else:
select_count = random_gen.integers(low=select_range[0], high=select_range[1]+1, size=1)
if select_count > len(options):
random_gen.shuffle(options)
selected_items = options
else:
selected_items = random_gen.choice(options, p=normalized_probabilities, size=select_count, replace=False)
selected_items2 = [re.sub(r'^\s*[0-9.]+::', '', x, 1) for x in selected_items]
replacement = select_sep.join(selected_items2)
if '::' in replacement:
pass
replacements_found = True
return replacement
pattern = r'{([^{}]*?)}'
replaced_string = re.sub(pattern, replace_option, string)
return replaced_string, replacements_found
def replace_wildcard(string):
local_wildcard_dict = get_wildcard_dict()
pattern = r"__([\w.\-+/*\\]+)__"
matches = re.findall(pattern, string)
replacements_found = False
for match in matches:
keyword = match.lower()
keyword = wildcard_normalize(keyword)
if keyword in local_wildcard_dict:
replacement = random_gen.choice(local_wildcard_dict[keyword])
replacements_found = True
string = string.replace(f"__{match}__", replacement, 1)
elif '*' in keyword:
subpattern = keyword.replace('*', '.*').replace('+','\+')
total_patterns = []
found = False
for k, v in local_wildcard_dict.items():
if re.match(subpattern, k) is not None:
total_patterns += v
found = True
if found:
replacement = random_gen.choice(total_patterns)
replacements_found = True
string = string.replace(f"__{match}__", replacement, 1)
elif '/' not in keyword:
string_fallback = string.replace(f"__{match}__", f"__*/{match}__", 1)
string, replacements_found = replace_wildcard(string_fallback)
return string, replacements_found
replace_depth = 100
stop_unwrap = False
while not stop_unwrap and replace_depth > 1:
replace_depth -= 1 # prevent infinite loop
# pass1: replace options
pass1, is_replaced1 = replace_options(text)
while is_replaced1:
pass1, is_replaced1 = replace_options(pass1)
# pass2: replace wildcards
text, is_replaced2 = replace_wildcard(pass1)
stop_unwrap = not is_replaced1 and not is_replaced2
return text
def is_numeric_string(input_str):
return re.match(r'^-?\d+(\.\d+)?$', input_str) is not None
def safe_float(x):
if is_numeric_string(x):
return float(x)
else:
return 1.0
def extract_lora_values(string):
pattern = r'<lora:([^>]+)>'
matches = re.findall(pattern, string)
def touch_lbw(text):
return re.sub(r'LBW=[A-Za-z][A-Za-z0-9_-]*:', r'LBW=', text)
items = [touch_lbw(match.strip(':')) for match in matches]
added = set()
result = []
for item in items:
item = item.split(':')
lora = None
a = None
b = None
lbw = None
lbw_a = None
lbw_b = None
if len(item) > 0:
lora = item[0]
for sub_item in item[1:]:
if is_numeric_string(sub_item):
if a is None:
a = float(sub_item)
elif b is None:
b = float(sub_item)
elif sub_item.startswith("LBW="):
for lbw_item in sub_item[4:].split(';'):
if lbw_item.startswith("A="):
lbw_a = safe_float(lbw_item[2:].strip())
elif lbw_item.startswith("B="):
lbw_b = safe_float(lbw_item[2:].strip())
elif lbw_item.strip() != '':
lbw = lbw_item
if a is None:
a = 1.0
if b is None:
b = a
if lora is not None and lora not in added:
result.append((lora, a, b, lbw, lbw_a, lbw_b))
added.add(lora)
return result
def remove_lora_tags(string):
pattern = r'<lora:[^>]+>'
result = re.sub(pattern, '', string)
return result
def resolve_lora_name(lora_name_cache, name):
if os.path.exists(name):
return name
else:
if len(lora_name_cache) == 0:
lora_name_cache.extend(folder_paths.get_filename_list("loras"))
for x in lora_name_cache:
if x.endswith(name):
return x
def process_with_loras(wildcard_opt, model, clip, clip_encoder=None):
lora_name_cache = []
pass1 = process(wildcard_opt)
loras = extract_lora_values(pass1)
pass2 = remove_lora_tags(pass1)
for lora_name, model_weight, clip_weight, lbw, lbw_a, lbw_b in loras:
lora_name_ext = lora_name.split('.')
if ('.'+lora_name_ext[-1]) not in folder_paths.supported_pt_extensions:
lora_name = lora_name+".safetensors"
orig_lora_name = lora_name
lora_name = resolve_lora_name(lora_name_cache, lora_name)
if lora_name is not None:
path = folder_paths.get_full_path("loras", lora_name)
else:
path = None
if path is not None:
print(f"LOAD LORA: {lora_name}: {model_weight}, {clip_weight}, LBW={lbw}, A={lbw_a}, B={lbw_b}")
def default_lora():
return nodes.LoraLoader().load_lora(model, clip, lora_name, model_weight, clip_weight)
if lbw is not None:
if 'LoraLoaderBlockWeight //Inspire' not in nodes.NODE_CLASS_MAPPINGS:
utils.try_install_custom_node(
'https://github.com/ltdrdata/ComfyUI-Inspire-Pack',
"To use 'LBW=' syntax in wildcards, 'Inspire Pack' extension is required.")
print(f"'LBW(Lora Block Weight)' is given, but the 'Inspire Pack' is not installed. The LBW= attribute is being ignored.")
model, clip = default_lora()
else:
cls = nodes.NODE_CLASS_MAPPINGS['LoraLoaderBlockWeight //Inspire']
model, clip, _ = cls().doit(model, clip, lora_name, model_weight, clip_weight, False, 0, lbw_a, lbw_b, "", lbw)
else:
model, clip = default_lora()
else:
print(f"LORA NOT FOUND: {orig_lora_name}")
pass3 = [x.strip() for x in pass2.split("BREAK")]
pass3 = [x for x in pass3 if x != '']
if len(pass3) == 0:
pass3 = ['']
pass3_str = [f'[{x}]' for x in pass3]
print(f"CLIP: {str.join(' + ', pass3_str)}")
result = None
for prompt in pass3:
if clip_encoder is None:
cur = nodes.CLIPTextEncode().encode(clip, prompt)[0]
else:
cur = clip_encoder.encode(clip, prompt)[0]
if result is not None:
result = nodes.ConditioningConcat().concat(result, cur)[0]
else:
result = cur
return model, clip, result
def starts_with_regex(pattern, text):
regex = re.compile(pattern)
return bool(regex.match(text))
def split_to_dict(text):
pattern = r'\[([A-Za-z0-9_. ]+)\]([^\[]+)(?=\[|$)'
matches = re.findall(pattern, text)
result_dict = {key: value.strip() for key, value in matches}
return result_dict
class WildcardChooser:
def __init__(self, items, randomize_when_exhaust):
self.i = 0
self.items = items
self.randomize_when_exhaust = randomize_when_exhaust
def get(self, seg):
if self.i >= len(self.items):
self.i = 0
if self.randomize_when_exhaust:
random.shuffle(self.items)
item = self.items[self.i]
self.i += 1
return item
class WildcardChooserDict:
def __init__(self, items):
self.items = items
def get(self, seg):
text = ""
if 'ALL' in self.items:
text = self.items['ALL']
if seg.label in self.items:
text += self.items[seg.label]
return text
def split_string_with_sep(input_string):
sep_pattern = r'\[SEP(?:\:\w+)?\]'
substrings = re.split(sep_pattern, input_string)
result_list = [None]
matches = re.findall(sep_pattern, input_string)
for i, substring in enumerate(substrings):
result_list.append(substring)
if i < len(matches):
if matches[i] == '[SEP]':
result_list.append(None)
elif matches[i] == '[SEP:R]':
result_list.append(random.randint(0, 1125899906842624))
else:
try:
seed = int(matches[i][5:-1])
except:
seed = None
result_list.append(seed)
iterable = iter(result_list)
return list(zip(iterable, iterable))
def process_wildcard_for_segs(wildcard):
if wildcard.startswith('[LAB]'):
raw_items = split_to_dict(wildcard)
items = {}
for k, v in raw_items.items():
v = v.strip()
if v != '':
items[k] = v
return 'LAB', WildcardChooserDict(items)
elif starts_with_regex(r"\[(ASC|DSC|RND)\]", wildcard):
mode = wildcard[1:4]
items = split_string_with_sep(wildcard[5:])
if mode == 'RND':
random.shuffle(items)
return mode, WildcardChooser(items, True)
else:
return mode, WildcardChooser(items, False)
else:
return None, WildcardChooser([(None, wildcard)], False)