|
|
|
|
|
|
|
|
|
|
|
import PyPDF2 |
|
from transformers import pipeline |
|
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech |
|
from datasets import load_dataset |
|
import torch |
|
from transformers import SpeechT5HifiGan |
|
from gradio import gr |
|
import gradio as gr |
|
|
|
|
|
def extract_abstract(paper_filename): |
|
with open(paper_filename, 'rb') as file: |
|
reader = PyPDF2.PdfReader(file) |
|
text = reader.pages[0].extract_text() |
|
|
|
|
|
|
|
|
|
|
|
abstract_start_index = text.find('Abstract') |
|
introduction_start_index = text.find('Introduction') |
|
|
|
if abstract_start_index == -1 or introduction_start_index == -1: |
|
return "" |
|
|
|
abstract = text[abstract_start_index + len('Abstract'):introduction_start_index].strip() |
|
return abstract |
|
|
|
return "" |
|
|
|
paper_filename = '/content/Article_11' |
|
abstract_text = extract_abstract(paper_filename) |
|
print(abstract_text) |
|
|
|
from transformers import pipeline |
|
summarizer = pipeline("summarization", model="Falconsai/text_summarization") |
|
print(summarizer(abstract_text, max_length=25, min_length=10, do_sample=False)) |
|
|
|
output = summarizer(abstract_text, max_length=26, min_length=10, do_sample=False) |
|
summary = output[0]['summary_text'] |
|
print(summary) |
|
|
|
|
|
|
|
def audio(text): |
|
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") |
|
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") |
|
summary |
|
inputs = processor(text=summary, return_tensors="pt") |
|
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") |
|
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) |
|
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings) |
|
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") |
|
with torch.no_grad(): |
|
speech = vocoder(spectrogram) |
|
|
|
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) |
|
Audio(speech, rate=16000) |
|
|
|
|
|
input_component = gr.File(file_types=["pdf"]) |
|
output_component = gr.Audio() |
|
|
|
demo = gr.Interface( |
|
fn=audio, |
|
inputs=input_component, |
|
outputs=output_component, |
|
title="Reading your abstract summary outloud", |
|
description="Upload a PDF that contains an Abstract. Get your abstract summarized in 1 sentence and read outloud. We only accept with PDfs that contains the section Abstract followed by one called Introduction" |
|
) |
|
|
|
demo.launch() |