nmed2024 / adrd /model /adrd_model.py
xf3227's picture
ok
6fc43ab
raw
history blame
40.7 kB
__all__ = ['ADRDModel']
import wandb
import torch
from torch.utils.data import DataLoader
import numpy as np
import tqdm
import multiprocessing
from sklearn.base import BaseEstimator
from sklearn.utils.validation import check_is_fitted
from sklearn.model_selection import train_test_split
from scipy.special import expit
from copy import deepcopy
from contextlib import suppress
from typing import Any, Self, Type
from functools import wraps
from tqdm import tqdm
Tensor = Type[torch.Tensor]
Module = Type[torch.nn.Module]
# for DistributedDataParallel
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from .. import nn
from ..nn import Transformer
from ..utils import TransformerTrainingDataset, TransformerBalancedTrainingDataset, TransformerValidationDataset, TransformerTestingDataset, Transformer2ndOrderBalancedTrainingDataset
from ..utils.misc import ProgressBar
from ..utils.misc import get_metrics_multitask, print_metrics_multitask
from ..utils.misc import convert_args_kwargs_to_kwargs
def _manage_ctx_fit(func):
''' ... '''
@wraps(func)
def wrapper(*args, **kwargs):
# format arguments
kwargs = convert_args_kwargs_to_kwargs(func, args, kwargs)
if kwargs['self']._device_ids is None:
return func(**kwargs)
else:
# change primary device
default_device = kwargs['self'].device
kwargs['self'].device = kwargs['self']._device_ids[0]
rtn = func(**kwargs)
kwargs['self'].to(default_device)
return rtn
return wrapper
class ADRDModel(BaseEstimator):
"""Primary model class for ADRD framework.
The ADRDModel encapsulates the core pipeline of the ADRD framework,
permitting users to train and validate with the provided data. Designed for
user-friendly operation, the ADRDModel is derived from
``sklearn.base.BaseEstimator``, ensuring compliance with the well-established
API design conventions of scikit-learn.
"""
def __init__(self,
src_modalities: dict[str, dict[str, Any]],
tgt_modalities: dict[str, dict[str, Any]],
label_fractions: dict[str, float],
d_model: int = 32,
nhead: int = 1,
num_encoder_layers: int = 1,
num_decoder_layers: int = 1,
num_epochs: int = 32,
batch_size: int = 8,
batch_size_multiplier: int = 1,
lr: float = 1e-2,
weight_decay: float = 0.0,
beta: float = 0.9999,
gamma: float = 2.0,
criterion: str | None = None,
device: str = 'cpu',
cuda_devices: list = [1],
img_net: str | None = None,
imgnet_layers: int | None = 2,
img_size: int | None = 128,
fusion_stage: str = 'middle',
patch_size: int | None = 16,
imgnet_ckpt: str | None = None,
train_imgnet: bool = False,
ckpt_path: str = './adrd_tool/adrd/dev/ckpt/ckpt.pt',
load_from_ckpt: bool = False,
save_intermediate_ckpts: bool = False,
data_parallel: bool = False,
verbose: int = 0,
wandb_ = 0,
balanced_sampling: bool = False,
label_distribution: dict = {},
ranking_loss: bool = False,
_device_ids: list | None = None,
_dataloader_num_workers: int = 4,
_amp_enabled: bool = False,
) -> None:
"""Create a new ADRD model.
:param src_modalities: _description_
:type src_modalities: dict[str, dict[str, Any]]
:param tgt_modalities: _description_
:type tgt_modalities: dict[str, dict[str, Any]]
:param label_fractions: _description_
:type label_fractions: dict[str, float]
:param d_model: _description_, defaults to 32
:type d_model: int, optional
:param nhead: number of transformer heads, defaults to 1
:type nhead: int, optional
:param num_encoder_layers: number of encoder layers, defaults to 1
:type num_encoder_layers: int, optional
:param num_decoder_layers: number of decoder layers, defaults to 1
:type num_decoder_layers: int, optional
:param num_epochs: number of training epochs, defaults to 32
:type num_epochs: int, optional
:param batch_size: batch size, defaults to 8
:type batch_size: int, optional
:param batch_size_multiplier: _description_, defaults to 1
:type batch_size_multiplier: int, optional
:param lr: learning rate, defaults to 1e-2
:type lr: float, optional
:param weight_decay: _description_, defaults to 0.0
:type weight_decay: float, optional
:param beta: _description_, defaults to 0.9999
:type beta: float, optional
:param gamma: The focusing parameter for the focal loss. Higher values of gamma make easy-to-classify examples contribute less to the loss relative to hard-to-classify examples. Must be non-negative., defaults to 2.0
:type gamma: float, optional
:param criterion: The criterion to select the best model, defaults to None
:type criterion: str | None, optional
:param device: 'cuda' or 'cpu', defaults to 'cpu'
:type device: str, optional
:param cuda_devices: A list of gpu numbers to data parallel training. The device must be set to 'cuda' and data_parallel must be set to True, defaults to [1]
:type cuda_devices: list, optional
:param img_net: _description_, defaults to None
:type img_net: str | None, optional
:param imgnet_layers: _description_, defaults to 2
:type imgnet_layers: int | None, optional
:param img_size: _description_, defaults to 128
:type img_size: int | None, optional
:param fusion_stage: _description_, defaults to 'middle'
:type fusion_stage: str, optional
:param patch_size: _description_, defaults to 16
:type patch_size: int | None, optional
:param imgnet_ckpt: _description_, defaults to None
:type imgnet_ckpt: str | None, optional
:param train_imgnet: Set to True to finetune the img_net backbone, defaults to False
:type train_imgnet: bool, optional
:param ckpt_path: The model checkpoint point path, defaults to './adrd_tool/adrd/dev/ckpt/ckpt.pt'
:type ckpt_path: str, optional
:param load_from_ckpt: Set to True to load the model weights from checkpoint ckpt_path, defaults to False
:type load_from_ckpt: bool, optional
:param save_intermediate_ckpts: Set to True to save intermediate model checkpoints, defaults to False
:type save_intermediate_ckpts: bool, optional
:param data_parallel: Set to True to enable data parallel trsining, defaults to False
:type data_parallel: bool, optional
:param verbose: _description_, defaults to 0
:type verbose: int, optional
:param wandb_: Set to 1 to track the loss and accuracy curves on wandb, defaults to 0
:type wandb_: int, optional
:param balanced_sampling: _description_, defaults to False
:type balanced_sampling: bool, optional
:param label_distribution: _description_, defaults to {}
:type label_distribution: dict, optional
:param ranking_loss: _description_, defaults to False
:type ranking_loss: bool, optional
:param _device_ids: _description_, defaults to None
:type _device_ids: list | None, optional
:param _dataloader_num_workers: _description_, defaults to 4
:type _dataloader_num_workers: int, optional
:param _amp_enabled: _description_, defaults to False
:type _amp_enabled: bool, optional
"""
# for multiprocessing
self._rank = 0
self._lock = None
# positional parameters
self.src_modalities = src_modalities
self.tgt_modalities = tgt_modalities
# training parameters
self.label_fractions = label_fractions
self.d_model = d_model
self.nhead = nhead
self.num_encoder_layers = num_encoder_layers
self.num_decoder_layers = num_decoder_layers
self.num_epochs = num_epochs
self.batch_size = batch_size
self.batch_size_multiplier = batch_size_multiplier
self.lr = lr
self.weight_decay = weight_decay
self.beta = beta
self.gamma = gamma
self.criterion = criterion
self.device = device
self.cuda_devices = cuda_devices
self.img_net = img_net
self.patch_size = patch_size
self.img_size = img_size
self.fusion_stage = fusion_stage
self.imgnet_ckpt = imgnet_ckpt
self.imgnet_layers = imgnet_layers
self.train_imgnet = train_imgnet
self.ckpt_path = ckpt_path
self.load_from_ckpt = load_from_ckpt
self.save_intermediate_ckpts = save_intermediate_ckpts
self.data_parallel = data_parallel
self.verbose = verbose
self.label_distribution = label_distribution
self.wandb_ = wandb_
self.balanced_sampling = balanced_sampling
self.ranking_loss = ranking_loss
self._device_ids = _device_ids
self._dataloader_num_workers = _dataloader_num_workers
self._amp_enabled = _amp_enabled
self.scaler = torch.cuda.amp.GradScaler()
# self._init_net()
@_manage_ctx_fit
def fit(self, x_trn, x_vld, y_trn, y_vld, img_train_trans=None, img_vld_trans=None, img_mode=0) -> Self:
# def fit(self, x, y) -> Self:
''' ... '''
# start a new wandb run to track this script
if self.wandb_ == 1:
wandb.init(
# set the wandb project where this run will be logged
project="ADRD_main",
# track hyperparameters and run metadata
config={
"Loss": 'Focalloss',
"ranking_loss": self.ranking_loss,
"img architecture": self.img_net,
"EMB": "ALL_SEQ",
"epochs": self.num_epochs,
"d_model": self.d_model,
# 'positional encoding': 'Diff PE',
'Balanced Sampling': self.balanced_sampling,
'Shared CNN': 'Yes',
}
)
wandb.run.log_code(".")
else:
wandb.init(mode="disabled")
# for PyTorch computational efficiency
torch.set_num_threads(1)
# print(img_train_trans)
# initialize neural network
print(self.criterion)
print(f"Ranking loss: {self.ranking_loss}")
print(f"Batch size: {self.batch_size}")
print(f"Batch size multiplier: {self.batch_size_multiplier}")
if img_mode in [0,1,2]:
for k, info in self.src_modalities.items():
if info['type'] == 'imaging':
if 'densenet' in self.img_net.lower() and 'emb' not in self.img_net.lower():
info['shape'] = (1,) + self.img_size
info['img_shape'] = (1,) + self.img_size
elif 'emb' not in self.img_net.lower():
info['shape'] = (1,) + (self.img_size,) * 3
info['img_shape'] = (1,) + (self.img_size,) * 3
elif 'swinunetr' in self.img_net.lower():
info['shape'] = (1, 768, 4, 4, 4)
info['img_shape'] = (1, 768, 4, 4, 4)
self._init_net()
ldr_trn, ldr_vld = self._init_dataloader(x_trn, x_vld, y_trn, y_vld, img_train_trans=img_train_trans, img_vld_trans=img_vld_trans)
# initialize optimizer and scheduler
if not self.load_from_ckpt:
self.optimizer = self._init_optimizer()
self.scheduler = self._init_scheduler(self.optimizer)
# gradient scaler for AMP
if self._amp_enabled:
self.scaler = torch.cuda.amp.GradScaler()
# initialize the focal losses
self.loss_fn = {}
for k in self.tgt_modalities:
if self.label_fractions[k] >= 0.3:
alpha = -1
else:
alpha = pow((1 - self.label_fractions[k]), 2)
# alpha = -1
self.loss_fn[k] = nn.SigmoidFocalLoss(
alpha = alpha,
gamma = self.gamma,
reduction = 'none'
)
# to record the best validation performance criterion
if self.criterion is not None:
best_crit = None
best_crit_AUPR = None
# progress bar for epoch loops
if self.verbose == 1:
with self._lock if self._lock is not None else suppress():
pbr_epoch = tqdm.tqdm(
desc = 'Rank {:02d}'.format(self._rank),
total = self.num_epochs,
position = self._rank,
ascii = True,
leave = False,
bar_format='{l_bar}{r_bar}'
)
self.skip_embedding = {}
for k, info in self.src_modalities.items():
# if info['type'] == 'imaging':
# if not self.img_net:
# self.skip_embedding[k] = True
# else:
self.skip_embedding[k] = False
self.grad_list = []
# Define a hook function to print and store the gradient of a layer
def print_and_store_grad(grad):
self.grad_list.append(grad)
# print(grad)
# initialize the ranking loss
self.lambda_coeff = 0.005
self.margin = 0.25
self.margin_loss = torch.nn.MarginRankingLoss(reduction='sum', margin=self.margin)
# training loop
for epoch in range(self.start_epoch, self.num_epochs):
met_trn = self.train_one_epoch(ldr_trn, epoch)
met_vld = self.validate_one_epoch(ldr_vld, epoch)
print(self.ckpt_path.split('/')[-1])
# save the model if it has the best validation performance criterion by far
if self.criterion is None: continue
# is current criterion better than previous best?
curr_crit = np.mean([met_vld[i][self.criterion] for i in range(len(self.tgt_modalities))])
curr_crit_AUPR = np.mean([met_vld[i]["AUC (PR)"] for i in range(len(self.tgt_modalities))])
# AUROC
if best_crit is None or np.isnan(best_crit):
is_better = True
elif self.criterion == 'Loss' and best_crit >= curr_crit:
is_better = True
elif self.criterion != 'Loss' and best_crit <= curr_crit :
is_better = True
else:
is_better = False
# AUPR
if best_crit_AUPR is None or np.isnan(best_crit_AUPR):
is_better_AUPR = True
elif best_crit_AUPR <= curr_crit_AUPR :
is_better_AUPR = True
else:
is_better_AUPR = False
# update best criterion
if is_better_AUPR:
best_crit_AUPR = curr_crit_AUPR
if self.save_intermediate_ckpts:
print(f"Saving the model to {self.ckpt_path[:-3]}_AUPR.pt...")
self.save(self.ckpt_path[:-3]+"_AUPR.pt", epoch)
if is_better:
best_crit = curr_crit
best_state_dict = deepcopy(self.net_.state_dict())
if self.save_intermediate_ckpts:
print(f"Saving the model to {self.ckpt_path}...")
self.save(self.ckpt_path, epoch)
if self.verbose > 2:
print('Best {}: {}'.format(self.criterion, best_crit))
print('Best {}: {}'.format('AUC (PR)', best_crit_AUPR))
if self.verbose == 1:
with self._lock if self._lock is not None else suppress():
pbr_epoch.update(1)
pbr_epoch.refresh()
if self.verbose == 1:
with self._lock if self._lock is not None else suppress():
pbr_epoch.close()
return self
def train_one_epoch(self, ldr_trn, epoch):
# progress bar for batch loops
if self.verbose > 1:
pbr_batch = ProgressBar(len(ldr_trn.dataset), 'Epoch {:03d} (TRN)'.format(epoch))
# set model to train mode
torch.set_grad_enabled(True)
self.net_.train()
scores_trn, y_true_trn, y_mask_trn = [], [], []
losses_trn = [[] for _ in self.tgt_modalities]
iters = len(ldr_trn)
for n_iter, (x_batch, y_batch, mask, y_mask) in enumerate(ldr_trn):
# mount data to the proper device
x_batch = {k: x_batch[k].to(self.device) for k in x_batch}
y_batch = {k: y_batch[k].to(torch.float).to(self.device) for k in y_batch}
mask = {k: mask[k].to(self.device) for k in mask}
y_mask = {k: y_mask[k].to(self.device) for k in y_mask}
with torch.autocast(
device_type = 'cpu' if self.device == 'cpu' else 'cuda',
dtype = torch.bfloat16 if self.device == 'cpu' else torch.float16,
enabled = self._amp_enabled,
):
outputs = self.net_(x_batch, mask, skip_embedding=self.skip_embedding)
# calculate multitask loss
loss = 0
# for initial 10 epochs, only the focal loss is used for stable training
if self.ranking_loss:
if epoch < 10:
loss = 0
else:
for i, k in enumerate(self.tgt_modalities):
for ii, kk in enumerate(self.tgt_modalities):
if ii>i:
pairs = (y_mask[k] == 1) & (y_mask[kk] == 1)
total_elements = (torch.abs(y_batch[k][pairs]-y_batch[kk][pairs])).sum()
if total_elements != 0:
loss += self.lambda_coeff * (self.margin_loss(torch.sigmoid(outputs[k])[pairs],torch.sigmoid(outputs[kk][pairs]),y_batch[k][pairs]-y_batch[kk][pairs]))/total_elements
for i, k in enumerate(self.tgt_modalities):
loss_task = self.loss_fn[k](outputs[k], y_batch[k])
msk_loss_task = loss_task * y_mask[k]
msk_loss_mean = msk_loss_task.sum() / y_mask[k].sum()
# msk_loss_mean = msk_loss_task.sum()
loss += msk_loss_mean
losses_trn[i] += msk_loss_task.detach().cpu().numpy().tolist()
# backward
loss = loss / self.batch_size_multiplier
if self._amp_enabled:
self.scaler.scale(loss).backward()
else:
loss.backward()
if len(self.grad_list) > 0:
print(len(self.grad_list), len(self.grad_list[-1]))
print(f"Gradient at {n_iter}: {self.grad_list[-1][0]}")
# print("img_MRI_T1_1 ", self.net_.modules_emb_src.img_MRI_T1_1.img_model.features[0].weight)
# print("img_MRI_T1_1 ", self.net_.modules_emb_src.img_MRI_T1_1.downsample[0].weight)
# update parameters
if n_iter != 0 and n_iter % self.batch_size_multiplier == 0:
if self._amp_enabled:
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad()
else:
self.optimizer.step()
self.optimizer.zero_grad()
# set self.scheduler
self.scheduler.step(epoch + n_iter / iters)
''' TODO: change array to dictionary later '''
outputs = torch.stack(list(outputs.values()), dim=1)
y_batch = torch.stack(list(y_batch.values()), dim=1)
y_mask = torch.stack(list(y_mask.values()), dim=1)
# save outputs to evaluate performance later
scores_trn.append(outputs.detach().to(torch.float).cpu())
y_true_trn.append(y_batch.cpu())
y_mask_trn.append(y_mask.cpu())
# update progress bar
if self.verbose > 1:
batch_size = len(next(iter(x_batch.values())))
pbr_batch.update(batch_size, {})
pbr_batch.refresh()
# clear cuda cache
if "cuda" in self.device:
torch.cuda.empty_cache()
# for better tqdm progress bar display
if self.verbose > 1:
pbr_batch.close()
# calculate and print training performance metrics
scores_trn = torch.cat(scores_trn)
y_true_trn = torch.cat(y_true_trn)
y_mask_trn = torch.cat(y_mask_trn)
y_pred_trn = (scores_trn > 0).to(torch.int)
y_prob_trn = torch.sigmoid(scores_trn)
met_trn = get_metrics_multitask(
y_true_trn.numpy(),
y_pred_trn.numpy(),
y_prob_trn.numpy(),
y_mask_trn.numpy()
)
# add loss to metrics
for i in range(len(self.tgt_modalities)):
met_trn[i]['Loss'] = np.mean(losses_trn[i])
# log metrics to wandb
wandb.log({f"Train loss {list(self.tgt_modalities)[i]}": met_trn[i]['Loss'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Train Balanced Accuracy {list(self.tgt_modalities)[i]}": met_trn[i]['Balanced Accuracy'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Train AUC (ROC) {list(self.tgt_modalities)[i]}": met_trn[i]['AUC (ROC)'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Train AUPR {list(self.tgt_modalities)[i]}": met_trn[i]['AUC (PR)'] for i in range(len(self.tgt_modalities))}, step=epoch)
if self.verbose > 2:
print_metrics_multitask(met_trn)
return met_trn
def validate_one_epoch(self, ldr_vld, epoch):
# # progress bar for validation
if self.verbose > 1:
pbr_batch = ProgressBar(len(ldr_vld.dataset), 'Epoch {:03d} (VLD)'.format(epoch))
# set model to validation mode
torch.set_grad_enabled(False)
self.net_.eval()
scores_vld, y_true_vld, y_mask_vld = [], [], []
losses_vld = [[] for _ in self.tgt_modalities]
for x_batch, y_batch, mask, y_mask in ldr_vld:
# if len(next(iter(x_batch.values()))) < self.batch_size:
# break
# mount data to the proper device
x_batch = {k: x_batch[k].to(self.device) for k in x_batch} # if 'img' not in k}
# x_img_batch = {k: x_img_batch[k].to(self.device) for k in x_img_batch}
y_batch = {k: y_batch[k].to(torch.float).to(self.device) for k in y_batch}
mask = {k: mask[k].to(self.device) for k in mask}
y_mask = {k: y_mask[k].to(self.device) for k in y_mask}
# forward
with torch.autocast(
device_type = 'cpu' if self.device == 'cpu' else 'cuda',
dtype = torch.bfloat16 if self.device == 'cpu' else torch.float16,
enabled = self._amp_enabled
):
outputs = self.net_(x_batch, mask, skip_embedding=self.skip_embedding)
# calculate multitask loss
for i, k in enumerate(self.tgt_modalities):
loss_task = self.loss_fn[k](outputs[k], y_batch[k])
msk_loss_task = loss_task * y_mask[k]
losses_vld[i] += msk_loss_task.detach().cpu().numpy().tolist()
''' TODO: change array to dictionary later '''
outputs = torch.stack(list(outputs.values()), dim=1)
y_batch = torch.stack(list(y_batch.values()), dim=1)
y_mask = torch.stack(list(y_mask.values()), dim=1)
# save outputs to evaluate performance later
scores_vld.append(outputs.detach().to(torch.float).cpu())
y_true_vld.append(y_batch.cpu())
y_mask_vld.append(y_mask.cpu())
# update progress bar
if self.verbose > 1:
batch_size = len(next(iter(x_batch.values())))
pbr_batch.update(batch_size, {})
pbr_batch.refresh()
# clear cuda cache
if "cuda" in self.device:
torch.cuda.empty_cache()
# for better tqdm progress bar display
if self.verbose > 1:
pbr_batch.close()
# calculate and print validation performance metrics
scores_vld = torch.cat(scores_vld)
y_true_vld = torch.cat(y_true_vld)
y_mask_vld = torch.cat(y_mask_vld)
y_pred_vld = (scores_vld > 0).to(torch.int)
y_prob_vld = torch.sigmoid(scores_vld)
met_vld = get_metrics_multitask(
y_true_vld.numpy(),
y_pred_vld.numpy(),
y_prob_vld.numpy(),
y_mask_vld.numpy()
)
# add loss to metrics
for i in range(len(self.tgt_modalities)):
met_vld[i]['Loss'] = np.mean(losses_vld[i])
wandb.log({f"Validation loss {list(self.tgt_modalities)[i]}": met_vld[i]['Loss'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Validation Balanced Accuracy {list(self.tgt_modalities)[i]}": met_vld[i]['Balanced Accuracy'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Validation AUC (ROC) {list(self.tgt_modalities)[i]}": met_vld[i]['AUC (ROC)'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Validation AUPR {list(self.tgt_modalities)[i]}": met_vld[i]['AUC (PR)'] for i in range(len(self.tgt_modalities))}, step=epoch)
if self.verbose > 2:
print_metrics_multitask(met_vld)
return met_vld
def predict_logits(self,
x: list[dict[str, Any]],
_batch_size: int | None = None,
skip_embedding: dict | None = None,
img_transform: Any | None = None,
) -> list[dict[str, float]]:
'''
The input x can be a single sample or a list of samples.
'''
# input validation
check_is_fitted(self)
print(self.device)
# for PyTorch computational efficiency
torch.set_num_threads(1)
# set model to eval mode
torch.set_grad_enabled(False)
self.net_.eval()
# intialize dataset and dataloader object
dat = TransformerTestingDataset(x, self.src_modalities, img_transform=img_transform)
ldr = DataLoader(
dataset = dat,
batch_size = _batch_size if _batch_size is not None else len(x),
shuffle = False,
drop_last = False,
num_workers = 0,
collate_fn = TransformerTestingDataset.collate_fn,
)
# print("dataloader done")
# run model and collect results
logits: list[dict[str, float]] = []
for x_batch, mask in tqdm(ldr):
# mount data to the proper device
# print(x_batch['his_SEX'])
x_batch = {k: x_batch[k].to(self.device) for k in x_batch}
mask = {k: mask[k].to(self.device) for k in mask}
# forward
output: dict[str, Tensor] = self.net_(x_batch, mask, skip_embedding)
# convert output from dict-of-list to list of dict, then append
tmp = {k: output[k].tolist() for k in self.tgt_modalities}
tmp = [{k: tmp[k][i] for k in self.tgt_modalities} for i in range(len(next(iter(tmp.values()))))]
logits += tmp
return logits
def predict_proba(self,
x: list[dict[str, Any]],
skip_embedding: dict | None = None,
temperature: float = 1.0,
_batch_size: int | None = None,
img_transform: Any | None = None,
) -> list[dict[str, float]]:
''' ... '''
logits = self.predict_logits(x=x, _batch_size=_batch_size, img_transform=img_transform, skip_embedding=skip_embedding)
print("got logits")
return logits, [{k: expit(smp[k] / temperature) for k in self.tgt_modalities} for smp in logits]
def predict(self,
x: list[dict[str, Any]],
skip_embedding: dict | None = None,
fpr: dict[str, Any] | None = None,
tpr: dict[str, Any] | None = None,
thresholds: dict[str, Any] | None = None,
_batch_size: int | None = None,
img_transform: Any | None = None,
) -> list[dict[str, int]]:
''' ... '''
if fpr is None or tpr is None or thresholds is None:
logits, proba = self.predict_proba(x, _batch_size=_batch_size, img_transform=img_transform, skip_embedding=skip_embedding)
print("got proba")
return logits, proba, [{k: int(smp[k] > 0.5) for k in self.tgt_modalities} for smp in proba]
else:
logits, proba = self.predict_proba(x, _batch_size=_batch_size, img_transform=img_transform, skip_embedding=skip_embedding)
print("got proba")
youden_index = {}
thr = {}
for i, k in enumerate(self.tgt_modalities):
youden_index[k] = tpr[i] - fpr[i]
thr[k] = thresholds[i][np.argmax(youden_index[k])]
# print(thr[k])
# print(thr)
return logits, proba, [{k: int(smp[k] > thr[k]) for k in self.tgt_modalities} for smp in proba]
def save(self, filepath: str, epoch: int) -> None:
"""Save the model to the given file stream.
:param filepath: _description_
:type filepath: str
:param epoch: _description_
:type epoch: int
"""
check_is_fitted(self)
if self.data_parallel:
state_dict = self.net_.module.state_dict()
else:
state_dict = self.net_.state_dict()
# attach model hyper parameters
state_dict['src_modalities'] = self.src_modalities
state_dict['tgt_modalities'] = self.tgt_modalities
state_dict['d_model'] = self.d_model
state_dict['nhead'] = self.nhead
state_dict['num_encoder_layers'] = self.num_encoder_layers
state_dict['num_decoder_layers'] = self.num_decoder_layers
state_dict['optimizer'] = self.optimizer
state_dict['img_net'] = self.img_net
state_dict['imgnet_layers'] = self.imgnet_layers
state_dict['img_size'] = self.img_size
state_dict['patch_size'] = self.patch_size
state_dict['imgnet_ckpt'] = self.imgnet_ckpt
state_dict['train_imgnet'] = self.train_imgnet
state_dict['epoch'] = epoch
if self.scaler is not None:
state_dict['scaler'] = self.scaler.state_dict()
if self.label_distribution:
state_dict['label_distribution'] = self.label_distribution
torch.save(state_dict, filepath)
def load(self, filepath: str, map_location: str = 'cpu', img_dict=None) -> None:
"""Load a model from the given file stream.
:param filepath: _description_
:type filepath: str
:param map_location: _description_, defaults to 'cpu'
:type map_location: str, optional
:param img_dict: _description_, defaults to None
:type img_dict: _type_, optional
"""
# load state_dict
state_dict = torch.load(filepath, map_location=map_location)
# load data modalities
self.src_modalities: dict[str, dict[str, Any]] = state_dict.pop('src_modalities')
self.tgt_modalities: dict[str, dict[str, Any]] = state_dict.pop('tgt_modalities')
if 'label_distribution' in state_dict:
self.label_distribution: dict[str, dict[int, int]] = state_dict.pop('label_distribution')
if 'optimizer' in state_dict:
self.optimizer = state_dict.pop('optimizer')
# initialize model
self.d_model = state_dict.pop('d_model')
self.nhead = state_dict.pop('nhead')
self.num_encoder_layers = state_dict.pop('num_encoder_layers')
self.num_decoder_layers = state_dict.pop('num_decoder_layers')
if 'epoch' in state_dict.keys():
self.start_epoch = state_dict.pop('epoch')
if img_dict is None:
self.img_net = state_dict.pop('img_net')
self.imgnet_layers = state_dict.pop('imgnet_layers')
self.img_size = state_dict.pop('img_size')
self.patch_size = state_dict.pop('patch_size')
self.imgnet_ckpt = state_dict.pop('imgnet_ckpt')
self.train_imgnet = state_dict.pop('train_imgnet')
else:
self.img_net = img_dict['img_net']
self.imgnet_layers = img_dict['imgnet_layers']
self.img_size = img_dict['img_size']
self.patch_size = img_dict['patch_size']
self.imgnet_ckpt = img_dict['imgnet_ckpt']
self.train_imgnet = img_dict['train_imgnet']
state_dict.pop('img_net')
state_dict.pop('imgnet_layers')
state_dict.pop('img_size')
state_dict.pop('patch_size')
state_dict.pop('imgnet_ckpt')
state_dict.pop('train_imgnet')
for k, info in self.src_modalities.items():
if info['type'] == 'imaging':
if 'emb' not in self.img_net.lower():
info['shape'] = (1,) + (self.img_size,) * 3
info['img_shape'] = (1,) + (self.img_size,) * 3
elif 'swinunetr' in self.img_net.lower():
info['shape'] = (1, 768, 4, 4, 4)
info['img_shape'] = (1, 768, 4, 4, 4)
# print(info['shape'])
self.net_ = Transformer(self.src_modalities, self.tgt_modalities, self.d_model, self.nhead, self.num_encoder_layers, self.num_decoder_layers, self.device, self.cuda_devices, self.img_net, self.imgnet_layers, self.img_size, self.patch_size, self.imgnet_ckpt, self.train_imgnet, self.fusion_stage)
if 'scaler' in state_dict and state_dict['scaler']:
self.scaler.load_state_dict(state_dict.pop('scaler'))
self.net_.load_state_dict(state_dict)
check_is_fitted(self)
self.net_.to(self.device)
def to(self, device: str) -> Self:
"""Mount the model to the given device.
:param device: _description_
:type device: str
:return: _description_
:rtype: Self
"""
self.device = device
if hasattr(self, 'model'): self.net_ = self.net_.to(device)
if hasattr(self, 'img_model'): self.img_model = self.img_model.to(device)
return self
@classmethod
def from_ckpt(cls, filepath: str, device='cpu', img_dict=None) -> Self:
"""Create a new ADRD model and load parameters from the checkpoint.
This is an alternative constructor.
:param filepath: _description_
:type filepath: str
:param device: _description_, defaults to 'cpu'
:type device: str, optional
:param img_dict: _description_, defaults to None
:type img_dict: _type_, optional
:return: _description_
:rtype: Self
"""
obj = cls(None, None, None,device=device)
if device == 'cuda':
obj.device = "{}:{}".format(obj.device, str(obj.cuda_devices[0]))
print(obj.device)
obj.load(filepath, map_location=obj.device, img_dict=img_dict)
return obj
def _init_net(self):
""" ... """
# set the device for use
if self.device == 'cuda':
self.device = "{}:{}".format(self.device, str(self.cuda_devices[0]))
print("Device: " + self.device)
self.start_epoch = 0
if self.load_from_ckpt:
try:
print("Loading model from checkpoint...")
self.load(self.ckpt_path, map_location=self.device)
except:
print("Cannot load from checkpoint. Initializing new model...")
self.load_from_ckpt = False
if not self.load_from_ckpt:
self.net_ = nn.Transformer(
src_modalities = self.src_modalities,
tgt_modalities = self.tgt_modalities,
d_model = self.d_model,
nhead = self.nhead,
num_encoder_layers = self.num_encoder_layers,
num_decoder_layers = self.num_decoder_layers,
device = self.device,
cuda_devices = self.cuda_devices,
img_net = self.img_net,
layers = self.imgnet_layers,
img_size = self.img_size,
patch_size = self.patch_size,
imgnet_ckpt = self.imgnet_ckpt,
train_imgnet = self.train_imgnet,
fusion_stage = self.fusion_stage,
)
# intialize model parameters using xavier_uniform
for name, p in self.net_.named_parameters():
if p.dim() > 1:
torch.nn.init.xavier_uniform_(p)
self.net_.to(self.device)
# Initialize the number of GPUs
if self.data_parallel and torch.cuda.device_count() > 1:
print("Available", torch.cuda.device_count(), "GPUs!")
self.net_ = torch.nn.DataParallel(self.net_, device_ids=self.cuda_devices)
# return net
def _init_dataloader(self, x_trn, x_vld, y_trn, y_vld, img_train_trans=None, img_vld_trans=None):
# initialize dataset and dataloader
if self.balanced_sampling:
dat_trn = Transformer2ndOrderBalancedTrainingDataset(
x_trn, y_trn,
self.src_modalities,
self.tgt_modalities,
dropout_rate = .5,
dropout_strategy = 'permutation',
img_transform=img_train_trans,
)
else:
dat_trn = TransformerTrainingDataset(
x_trn, y_trn,
self.src_modalities,
self.tgt_modalities,
dropout_rate = .5,
dropout_strategy = 'permutation',
img_transform=img_train_trans,
)
dat_vld = TransformerValidationDataset(
x_vld, y_vld,
self.src_modalities,
self.tgt_modalities,
img_transform=img_vld_trans,
)
ldr_trn = DataLoader(
dataset = dat_trn,
batch_size = self.batch_size,
shuffle = True,
drop_last = False,
num_workers = self._dataloader_num_workers,
collate_fn = TransformerTrainingDataset.collate_fn,
# pin_memory = True
)
ldr_vld = DataLoader(
dataset = dat_vld,
batch_size = self.batch_size,
shuffle = False,
drop_last = False,
num_workers = self._dataloader_num_workers,
collate_fn = TransformerValidationDataset.collate_fn,
# pin_memory = True
)
return ldr_trn, ldr_vld
def _init_optimizer(self):
""" ... """
params = list(self.net_.parameters())
return torch.optim.AdamW(
params,
lr = self.lr,
betas = (0.9, 0.98),
weight_decay = self.weight_decay
)
def _init_scheduler(self, optimizer):
""" ... """
return torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(
optimizer=optimizer,
T_0=64,
T_mult=2,
eta_min = 0,
verbose=(self.verbose > 2)
)
def _init_loss_func(self,
num_per_cls: dict[str, tuple[int, int]],
) -> dict[str, Module]:
""" ... """
return {k: nn.SigmoidFocalLossBeta(
beta = self.beta,
gamma = self.gamma,
num_per_cls = num_per_cls[k],
reduction = 'none',
) for k in self.tgt_modalities}
def _proc_fit(self):
""" ... """