File size: 4,614 Bytes
0ff353f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
import os
import numpy as np
import librosa
import joblib

from .utils.evaluation import AudioEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

from dotenv import load_dotenv
load_dotenv()

router = APIRouter()

DESCRIPTION = "Random Baseline"
ROUTE = "/audio"

def create_spec(dataset, target_sampling_rate=3000):
    spectograms = []
    audio_length = int(36000/(12000/target_sampling_rate))
    for d in dataset:  
        audio_sample = librosa.resample(
            d["audio"]["array"], 
            orig_sr= d["audio"]["sampling_rate"], 
            target_sr=target_sampling_rate
        )
        
        if len(audio_sample) == 0:
            continue     
        if len(audio_sample) < audio_length:
            padding_needed = audio_length - len(audio_sample)
            repeats = (padding_needed // len(audio_sample)) + 1
            audio_sample = np.concatenate([audio_sample] + [audio_sample[:padding_needed]] * repeats)[:audio_length]
        elif len(audio_sample) > audio_length:
            audio_sample = audio_sample[:audio_length]
        
        rms = np.sqrt(np.mean(np.square(audio_sample)))
        scalar = 10 ** (-20 / 20) / (rms + 1e-8)
        
        mel = librosa.feature.melspectrogram(
            y=audio_sample*scalar,
            sr=12000,
            n_fft=2048,
            hop_length=1024,
            n_mels=12,
            power=2.0,
        )
        mel_db = librosa.power_to_db(mel, ref=np.max)  
        mel_db_normalized = (mel_db - mel_db.mean()) / (mel_db.std() + 1e-8)
        spectograms.append(mel_db_normalized.T.flatten())
        
    return np.stack(spectograms)


@router.post(ROUTE, tags=["Audio Task"],
             description=DESCRIPTION)
async def evaluate_audio(request: AudioEvaluationRequest):
    """
    Evaluate audio classification for rainforest sound detection.
    
    Current Model: Random Baseline
    - Makes random predictions from the label space (0-1)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "chainsaw": 0,
        "environment": 1
    }
    # Load and prepare the dataset
    # Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
    dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
    
    # Split dataset
    train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
    test_dataset = train_test["test"]
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")
    
    test_spec = create_spec(test_dataset)
    H = np.load("H.npy")
    W_test = np.dot(test_spec, H)
    model = joblib.load('model.joblib')
    
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   
    
    # Make random predictions (placeholder for actual model inference)
    true_labels = test_dataset["label"]
    predictions = model.predict(W_test)
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   
    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results