Spaces:
Sleeping
Sleeping
File size: 4,614 Bytes
0ff353f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
import os
import numpy as np
import librosa
import joblib
from .utils.evaluation import AudioEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from dotenv import load_dotenv
load_dotenv()
router = APIRouter()
DESCRIPTION = "Random Baseline"
ROUTE = "/audio"
def create_spec(dataset, target_sampling_rate=3000):
spectograms = []
audio_length = int(36000/(12000/target_sampling_rate))
for d in dataset:
audio_sample = librosa.resample(
d["audio"]["array"],
orig_sr= d["audio"]["sampling_rate"],
target_sr=target_sampling_rate
)
if len(audio_sample) == 0:
continue
if len(audio_sample) < audio_length:
padding_needed = audio_length - len(audio_sample)
repeats = (padding_needed // len(audio_sample)) + 1
audio_sample = np.concatenate([audio_sample] + [audio_sample[:padding_needed]] * repeats)[:audio_length]
elif len(audio_sample) > audio_length:
audio_sample = audio_sample[:audio_length]
rms = np.sqrt(np.mean(np.square(audio_sample)))
scalar = 10 ** (-20 / 20) / (rms + 1e-8)
mel = librosa.feature.melspectrogram(
y=audio_sample*scalar,
sr=12000,
n_fft=2048,
hop_length=1024,
n_mels=12,
power=2.0,
)
mel_db = librosa.power_to_db(mel, ref=np.max)
mel_db_normalized = (mel_db - mel_db.mean()) / (mel_db.std() + 1e-8)
spectograms.append(mel_db_normalized.T.flatten())
return np.stack(spectograms)
@router.post(ROUTE, tags=["Audio Task"],
description=DESCRIPTION)
async def evaluate_audio(request: AudioEvaluationRequest):
"""
Evaluate audio classification for rainforest sound detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-1)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"chainsaw": 0,
"environment": 1
}
# Load and prepare the dataset
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
test_spec = create_spec(test_dataset)
H = np.load("H.npy")
W_test = np.dot(test_spec, H)
model = joblib.load('model.joblib')
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
# Make random predictions (placeholder for actual model inference)
true_labels = test_dataset["label"]
predictions = model.predict(W_test)
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results |