Varun-Journey / app.py
vmagotr1's picture
Update app.py
c758ec0 verified
raw
history blame
6.25 kB
# import gradio as gr
# from huggingface_hub import InferenceClient
# # Step 1: Read your background info
# with open("BACKGROUND.md", "r", encoding="utf-8") as f:
# background_text = f.read()
# # Step 2: Set up your InferenceClient (same as before)
# client = InferenceClient("google/gemma-2-2b-jpn-it")
# # HuggingFaceH4/zephyr-7b-beta
# def respond(
# message,
# history: list[dict],
# system_message: str,
# max_tokens: int,
# temperature: float,
# top_p: float,
# ):
# if history is None:
# history = []
# # Include background text as part of the system message for context
# combined_system_message = f"{system_message}\n\n### Background Information ###\n{background_text}"
# # Start building the conversation history
# messages = [{"role": "system", "content": combined_system_message}]
# # Add conversation history
# for interaction in history:
# if "user" in interaction:
# messages.append({"role": "user", "content": interaction["user"]})
# if "assistant" in interaction:
# messages.append({"role": "assistant", "content": interaction["assistant"]})
# # Add the latest user message
# messages.append({"role": "user", "content": message})
# # Generate response
# response = ""
# for msg in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = msg.choices[0].delta.content
# response += token
# yield response
# print("----- SYSTEM MESSAGE -----")
# print(messages[0]["content"])
# print("----- FULL MESSAGES LIST -----")
# for m in messages:
# print(m)
# print("-------------------------")
# # Step 3: Build a Gradio Blocks interface with two Tabs
# with gr.Blocks() as demo:
# # Tab 1: GPT Chat Agent
# with gr.Tab("GPT Chat Agent"):
# gr.Markdown("## Welcome to Varun's GPT Agent")
# gr.Markdown("Feel free to ask questions about Varun’s journey, skills, and more!")
# chat = gr.ChatInterface(
# fn=respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
# ],
# type="messages", # Specify message type
# )
# # # Tab 2: Background Document
# # with gr.Tab("Varun's Background"):
# # gr.Markdown("# About Varun")
# # gr.Markdown(background_text)
# # Step 4: Launch
# if __name__ == "__main__":
# demo.launch()
import gradio as gr
from huggingface_hub import InferenceClient
# Step 1: Read your background info
with open("BACKGROUND.md", "r", encoding="utf-8") as f:
background_text = f.read()
# Step 2: Set up your InferenceClient (using text-generation instead of chat)
client = InferenceClient("google/gemma-2-2b-jpn-it")
def respond(
message,
history: list[dict],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
):
"""
Merges 'system_message', 'background_text', and conversation 'history'
into a single text prompt, then calls client.text_generation(...)
for a response.
"""
if history is None:
history = []
# Combine system instructions + background + prior conversation + new user message
prompt = f"{system_message}\n\n### Background Information ###\n{background_text}\n\n"
for interaction in history:
if "user" in interaction:
prompt += f"User: {interaction['user']}\n"
if "assistant" in interaction:
prompt += f"Assistant: {interaction['assistant']}\n"
# Add the latest user query
prompt += f"User: {message}\nAssistant:" # We'll generate the Assistant's text after this
# Generate response using text_generation in streaming mode
response = ""
# The text returned will include the entire prompt + new text,
# so we’ll need to subtract out the prompt length to isolate the new portion.
prompt_length = len(prompt)
for chunk in client.text_generation(
prompt=prompt,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True, # streaming each chunk
):
# Each chunk is a dict like {"generated_text": "full text so far..."}
full_text = chunk["generated_text"]
# The newly generated portion is what's after the original prompt
new_text = full_text[prompt_length:]
response += new_text
prompt_length = len(full_text) # update for next chunk
yield response
# For debugging: show what we actually sent
print("----- FULL PROMPT -----")
print(prompt)
print("----- END PROMPT -----")
# Step 3: Build a Gradio Blocks interface with two Tabs
with gr.Blocks() as demo:
with gr.Tab("Gemma Chat Agent"):
gr.Markdown("## Welcome to Varun's GPT Agent")
gr.Markdown("Feel free to ask questions about Varun’s journey, skills, and more!")
chat = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
type="messages", # Gradio will keep track of (user, assistant) messages in history
)
# Optional: If you want a separate tab to display background_text
# with gr.Tab("Varun's Background"):
# gr.Markdown("# About Varun")
# gr.Markdown(background_text)
# Step 4: Launch
if __name__ == "__main__":
demo.launch()