Spaces:
Sleeping
Sleeping
# import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# # Step 1: Read your background info | |
# with open("BACKGROUND.md", "r", encoding="utf-8") as f: | |
# background_text = f.read() | |
# # Step 2: Set up your InferenceClient (same as before) | |
# client = InferenceClient("google/gemma-2-2b-jpn-it") | |
# # HuggingFaceH4/zephyr-7b-beta | |
# def respond( | |
# message, | |
# history: list[dict], | |
# system_message: str, | |
# max_tokens: int, | |
# temperature: float, | |
# top_p: float, | |
# ): | |
# if history is None: | |
# history = [] | |
# # Include background text as part of the system message for context | |
# combined_system_message = f"{system_message}\n\n### Background Information ###\n{background_text}" | |
# # Start building the conversation history | |
# messages = [{"role": "system", "content": combined_system_message}] | |
# # Add conversation history | |
# for interaction in history: | |
# if "user" in interaction: | |
# messages.append({"role": "user", "content": interaction["user"]}) | |
# if "assistant" in interaction: | |
# messages.append({"role": "assistant", "content": interaction["assistant"]}) | |
# # Add the latest user message | |
# messages.append({"role": "user", "content": message}) | |
# # Generate response | |
# response = "" | |
# for msg in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = msg.choices[0].delta.content | |
# response += token | |
# yield response | |
# print("----- SYSTEM MESSAGE -----") | |
# print(messages[0]["content"]) | |
# print("----- FULL MESSAGES LIST -----") | |
# for m in messages: | |
# print(m) | |
# print("-------------------------") | |
# # Step 3: Build a Gradio Blocks interface with two Tabs | |
# with gr.Blocks() as demo: | |
# # Tab 1: GPT Chat Agent | |
# with gr.Tab("GPT Chat Agent"): | |
# gr.Markdown("## Welcome to Varun's GPT Agent") | |
# gr.Markdown("Feel free to ask questions about Varun’s journey, skills, and more!") | |
# chat = gr.ChatInterface( | |
# fn=respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
# ], | |
# type="messages", # Specify message type | |
# ) | |
# # # Tab 2: Background Document | |
# # with gr.Tab("Varun's Background"): | |
# # gr.Markdown("# About Varun") | |
# # gr.Markdown(background_text) | |
# # Step 4: Launch | |
# if __name__ == "__main__": | |
# demo.launch() | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
# Step 1: Read your background info | |
with open("BACKGROUND.md", "r", encoding="utf-8") as f: | |
background_text = f.read() | |
# Step 2: Set up your InferenceClient (using text-generation instead of chat) | |
client = InferenceClient("google/gemma-2-2b-jpn-it") | |
def respond( | |
message, | |
history: list[dict], | |
system_message: str, | |
max_tokens: int, | |
temperature: float, | |
top_p: float, | |
): | |
""" | |
Merges 'system_message', 'background_text', and conversation 'history' | |
into a single text prompt, then calls client.text_generation(...) | |
for a response. | |
""" | |
if history is None: | |
history = [] | |
# Combine system instructions + background + prior conversation + new user message | |
prompt = f"{system_message}\n\n### Background Information ###\n{background_text}\n\n" | |
for interaction in history: | |
if "user" in interaction: | |
prompt += f"User: {interaction['user']}\n" | |
if "assistant" in interaction: | |
prompt += f"Assistant: {interaction['assistant']}\n" | |
# Add the latest user query | |
prompt += f"User: {message}\nAssistant:" # We'll generate the Assistant's text after this | |
# Generate response using text_generation in streaming mode | |
response = "" | |
# The text returned will include the entire prompt + new text, | |
# so we’ll need to subtract out the prompt length to isolate the new portion. | |
prompt_length = len(prompt) | |
for chunk in client.text_generation( | |
prompt=prompt, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
stream=True, # streaming each chunk | |
): | |
# Each chunk is a dict like {"generated_text": "full text so far..."} | |
full_text = chunk["generated_text"] | |
# The newly generated portion is what's after the original prompt | |
new_text = full_text[prompt_length:] | |
response += new_text | |
prompt_length = len(full_text) # update for next chunk | |
yield response | |
# For debugging: show what we actually sent | |
print("----- FULL PROMPT -----") | |
print(prompt) | |
print("----- END PROMPT -----") | |
# Step 3: Build a Gradio Blocks interface with two Tabs | |
with gr.Blocks() as demo: | |
with gr.Tab("Gemma Chat Agent"): | |
gr.Markdown("## Welcome to Varun's GPT Agent") | |
gr.Markdown("Feel free to ask questions about Varun’s journey, skills, and more!") | |
chat = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
type="messages", # Gradio will keep track of (user, assistant) messages in history | |
) | |
# Optional: If you want a separate tab to display background_text | |
# with gr.Tab("Varun's Background"): | |
# gr.Markdown("# About Varun") | |
# gr.Markdown(background_text) | |
# Step 4: Launch | |
if __name__ == "__main__": | |
demo.launch() | |