|
import os |
|
import torch |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments,BitsAndBytesConfig |
|
from datasets import load_dataset |
|
from trl import SFTTrainer |
|
from peft import AutoPeftModelForCausalLM, LoraConfig, get_peft_model, prepare_model_for_kbit_training |
|
from utils import find_all_linear_names, print_trainable_parameters |
|
|
|
output_dir="./results" |
|
model_name ="codellama/CodeLlama-7b-hf" |
|
|
|
dataset = load_dataset('timdettmers/openassistant-guanaco', split="train") |
|
|
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
bnb_4bit_use_double_quant=True, |
|
) |
|
|
|
base_model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, quantization_config=bnb_config) |
|
base_model.config.use_cache = False |
|
base_model = prepare_model_for_kbit_training(base_model) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.padding_side = "right" |
|
|
|
|
|
peft_config = LoraConfig( |
|
r=32, |
|
lora_alpha=16, |
|
target_modules=find_all_linear_names(base_model), |
|
lora_dropout=0.05, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
) |
|
|
|
base_model = get_peft_model(base_model, peft_config) |
|
print_trainable_parameters(base_model) |
|
|
|
|
|
training_args = TrainingArguments( |
|
per_device_train_batch_size=1, |
|
gradient_accumulation_steps=1, |
|
gradient_checkpointing =True, |
|
max_grad_norm= 0.3, |
|
num_train_epochs=3, |
|
learning_rate=1e-4, |
|
bf16=True, |
|
save_total_limit=3, |
|
logging_steps=300, |
|
output_dir=output_dir, |
|
optim="paged_adamw_32bit", |
|
lr_scheduler_type="constant", |
|
warmup_ratio=0.05, |
|
) |
|
|
|
trainer = SFTTrainer( |
|
base_model, |
|
train_dataset=dataset, |
|
dataset_text_field="text", |
|
tokenizer=tokenizer, |
|
max_seq_length=512, |
|
args=training_args |
|
) |
|
|
|
trainer.train() |
|
trainer.save_model(output_dir) |
|
|
|
output_dir = os.path.join(output_dir, "final_checkpoint") |
|
trainer.model.save_pretrained(output_dir) |
|
tokenizer.save_pretrained(output_dir) |