dance-classifier / train.py
waidhoferj's picture
updated packages
3b31903
raw
history blame
7.52 kB
from torch.utils.data import DataLoader
import pandas as pd
from typing import Callable
from torch import nn
from torch.utils.data import SubsetRandomSampler
from sklearn.model_selection import KFold
import pytorch_lightning as pl
from pytorch_lightning import callbacks as cb
from models.utils import LabelWeightedBCELoss
from models.audio_spectrogram_transformer import (
train as train_audio_spectrogram_transformer,
get_id_label_mapping,
)
from preprocessing.dataset import SongDataset, WaveformTrainingEnvironment
from preprocessing.preprocess import get_examples
from models.residual import ResidualDancer, TrainingEnvironment
from models.decision_tree import DanceTreeClassifier, features_from_path
import yaml
from preprocessing.dataset import (
DanceDataModule,
WaveformSongDataset,
HuggingFaceWaveformSongDataset,
)
from torch.utils.data import random_split
import numpy as np
from transformers import AutoFeatureExtractor, AutoModelForAudioClassification
from argparse import ArgumentParser
import torch
from torch import nn
from sklearn.utils.class_weight import compute_class_weight
def get_training_fn(id: str) -> Callable:
match id:
case "ast_ptl":
return train_ast_lightning
case "ast_hf":
return train_ast
case "residual_dancer":
return train_model
case "decision_tree":
return train_decision_tree
case _:
raise Exception(f"Couldn't find a training function for '{id}'.")
def get_config(filepath: str) -> dict:
with open(filepath, "r") as f:
config = yaml.safe_load(f)
return config
def cross_validation(config, k=5):
df = pd.read_csv("data/songs.csv")
g_config = config["global"]
batch_size = config["data_module"]["batch_size"]
x, y = get_examples(df, "data/samples", class_list=g_config["dance_ids"])
dataset = SongDataset(x, y)
splits = KFold(n_splits=k, shuffle=True, random_state=g_config["seed"])
trainer = pl.Trainer(accelerator=g_config["device"])
for fold, (train_idx, val_idx) in enumerate(splits.split(x, y)):
print(f"Fold {fold+1}")
model = ResidualDancer(n_classes=len(g_config["dance_ids"]))
train_env = TrainingEnvironment(model, nn.BCELoss())
train_sampler = SubsetRandomSampler(train_idx)
test_sampler = SubsetRandomSampler(val_idx)
train_loader = DataLoader(dataset, batch_size=batch_size, sampler=train_sampler)
test_loader = DataLoader(dataset, batch_size=batch_size, sampler=test_sampler)
trainer.fit(train_env, train_loader)
trainer.test(train_env, test_loader)
def train_model(config: dict):
TARGET_CLASSES = config["global"]["dance_ids"]
DEVICE = config["global"]["device"]
SEED = config["global"]["seed"]
pl.seed_everything(SEED, workers=True)
data = DanceDataModule(target_classes=TARGET_CLASSES, **config["data_module"])
model = ResidualDancer(n_classes=len(TARGET_CLASSES), **config["model"])
label_weights = data.get_label_weights().to(DEVICE)
criterion = LabelWeightedBCELoss(
label_weights
) # nn.CrossEntropyLoss(label_weights)
train_env = TrainingEnvironment(model, criterion, config)
callbacks = [
# cb.LearningRateFinder(update_attr=True),
cb.EarlyStopping("val/loss", patience=5),
cb.StochasticWeightAveraging(1e-2),
cb.RichProgressBar(),
cb.DeviceStatsMonitor(),
]
trainer = pl.Trainer(callbacks=callbacks, **config["trainer"])
trainer.fit(train_env, datamodule=data)
trainer.test(train_env, datamodule=data)
def train_ast(config: dict):
TARGET_CLASSES = config["global"]["dance_ids"]
DEVICE = config["global"]["device"]
SEED = config["global"]["seed"]
dataset_kwargs = config["data_module"]["dataset_kwargs"]
test_proportion = config["data_module"].get("test_proportion", 0.2)
train_proportion = 1.0 - test_proportion
song_data_path = "data/songs_cleaned.csv"
song_audio_path = "data/samples"
pl.seed_everything(SEED, workers=True)
df = pd.read_csv(song_data_path)
x, y = get_examples(
df, song_audio_path, class_list=TARGET_CLASSES, multi_label=True
)
train_i, test_i = random_split(
np.arange(len(x)), [train_proportion, test_proportion]
)
train_ds = HuggingFaceWaveformSongDataset(
x[train_i], y[train_i], **dataset_kwargs, resample_frequency=16000
)
test_ds = HuggingFaceWaveformSongDataset(
x[test_i], y[test_i], **dataset_kwargs, resample_frequency=16000
)
train_audio_spectrogram_transformer(
TARGET_CLASSES, train_ds, test_ds, device=DEVICE
)
def train_ast_lightning(config: dict):
"""
work on integration between waveform dataset and environment. Should work for both HF and PTL.
"""
TARGET_CLASSES = config["global"]["dance_ids"]
DEVICE = config["global"]["device"]
SEED = config["global"]["seed"]
pl.seed_everything(SEED, workers=True)
data = DanceDataModule(
target_classes=TARGET_CLASSES,
dataset_cls=WaveformSongDataset,
**config["data_module"],
)
id2label, label2id = get_id_label_mapping(TARGET_CLASSES)
model_checkpoint = "MIT/ast-finetuned-audioset-10-10-0.4593"
feature_extractor = AutoFeatureExtractor.from_pretrained(model_checkpoint)
model = AutoModelForAudioClassification.from_pretrained(
model_checkpoint,
num_labels=len(label2id),
label2id=label2id,
id2label=id2label,
ignore_mismatched_sizes=True,
).to(DEVICE)
label_weights = data.get_label_weights().to(DEVICE)
criterion = LabelWeightedBCELoss(
label_weights
) # nn.CrossEntropyLoss(label_weights)
train_env = WaveformTrainingEnvironment(model, criterion, feature_extractor, config)
callbacks = [
# cb.LearningRateFinder(update_attr=True),
cb.EarlyStopping("val/loss", patience=5),
cb.StochasticWeightAveraging(1e-2),
cb.RichProgressBar(),
]
trainer = pl.Trainer(callbacks=callbacks, **config["trainer"])
trainer.fit(train_env, datamodule=data)
trainer.test(train_env, datamodule=data)
def train_decision_tree(config: dict):
TARGET_CLASSES = config["global"]["dance_ids"]
DEVICE = config["global"]["device"]
SEED = config["global"]["seed"]
song_data_path = config["data_module"]["song_data_path"]
song_audio_path = config["data_module"]["song_audio_path"]
pl.seed_everything(SEED, workers=True)
df = pd.read_csv(song_data_path)
x, y = get_examples(
df, song_audio_path, class_list=TARGET_CLASSES, multi_label=True
)
# Convert y back to string classes
y = np.array(TARGET_CLASSES)[y.argmax(-1)]
train_i, test_i = random_split(np.arange(len(x)), [0.8, 0.2])
train_paths, train_y = x[train_i], y[train_i]
train_x = features_from_path(train_paths)
model = DanceTreeClassifier(device=DEVICE)
model.fit(train_x, train_y)
model.save()
if __name__ == "__main__":
parser = ArgumentParser(
description="Trains models on the dance dataset and saves weights."
)
parser.add_argument(
"--config",
help="Path to the yaml file that defines the training configuration.",
default="models/config/train_local.yaml",
)
args = parser.parse_args()
config = get_config(args.config)
training_id = config["global"]["id"]
train = get_training_fn(training_id)
train(config)