File size: 11,005 Bytes
864f28a
a1ef945
 
 
35acd3c
ca1d38d
c7a28ea
ceb9625
eac8dde
 
 
 
 
6e9bd28
35acd3c
eac8dde
 
 
ceb9625
f95f954
 
 
 
 
 
c7a28ea
f95f954
c7a28ea
 
f95f954
195e9d5
f95f954
c7a28ea
 
 
 
 
 
 
 
f95f954
c7a28ea
 
 
 
 
 
 
f95f954
 
 
 
195e9d5
f95f954
 
195e9d5
f95f954
 
c7a28ea
f95f954
 
 
c7a28ea
f95f954
195e9d5
0ff54a0
f95f954
eac8dde
0ff54a0
c7a28ea
ca1d38d
 
 
 
 
 
35acd3c
ca1d38d
 
 
 
195e9d5
 
ca1d38d
 
c7a28ea
ca1d38d
 
 
 
 
 
 
35acd3c
ca1d38d
35acd3c
 
f95f954
 
 
 
 
 
 
 
 
 
 
 
 
eac8dde
f95f954
 
 
 
 
 
 
 
 
 
 
c7a28ea
f95f954
 
 
 
 
c7a28ea
 
f95f954
 
c7a28ea
f95f954
 
 
 
c7a28ea
ca1d38d
c7a28ea
f95f954
eac8dde
c7a28ea
f95f954
c7a28ea
f95f954
 
 
c7a28ea
f95f954
 
c7a28ea
f95f954
 
 
c7a28ea
f95f954
 
 
c7a28ea
f95f954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7a28ea
f95f954
195e9d5
f95f954
c7a28ea
f95f954
c7a28ea
 
f95f954
 
eac8dde
f95f954
c7a28ea
f95f954
 
 
 
 
 
c7a28ea
f95f954
 
 
 
 
 
 
ca1d38d
f95f954
91033f9
 
f95f954
 
a1ef945
ca1d38d
 
a1ef945
195e9d5
ca1d38d
f95f954
c7a28ea
 
 
 
f95f954
ca1d38d
c7a28ea
 
 
ca1d38d
c7a28ea
91033f9
ca1d38d
a1ef945
eac8dde
195e9d5
eac8dde
195e9d5
f95f954
 
 
f4bbd39
f95f954
a1ef945
ca1d38d
a1ef945
f95f954
 
a1ef945
4682c30
f95f954
 
c7a28ea
f95f954
 
 
 
 
 
a1ef945
 
f95f954
4682c30
35acd3c
f95f954
35acd3c
eac8dde
4682c30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import os 
import gradio as gr
import pandas as pd
import torch
import logging
import gc
from transformers import pipeline

# Setup logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Device configuration
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {DEVICE}")

def clear_gpu_memory():
    """Utility function to clear GPU memory"""
    if DEVICE == "cuda":
        torch.cuda.empty_cache()
    gc.collect()

class FinancialDataExtractor:
    """Extract and clean financial data"""
    
    def __init__(self):
        self.logger = logger
        
    def clean_number(self, value):
        """Clean numeric values from financial statements"""
        try:
            if pd.isna(value) or value == '' or value == '-':
                return 0.0
            if isinstance(value, (int, float)):
                return float(value)
            
            # Remove currency symbols, spaces, commas
            cleaned = str(value).replace('$', '').replace(',', '').replace('"', '').strip()
            # Handle parentheses for negative numbers
            if '(' in cleaned and ')' in cleaned:
                cleaned = '-' + cleaned.replace('(', '').replace(')', '')
            return float(cleaned)
        except:
            return 0.0

    def extract_data(self, df: pd.DataFrame) -> pd.DataFrame:
        """Extract and clean data from DataFrame"""
        # Clean column names
        df.columns = df.columns.str.strip()
        
        # Get year columns
        year_cols = [col for col in df.columns if str(col).isdigit()]
        
        if not year_cols:
            raise ValueError("No year columns found in data")
            
        # Clean numeric data
        for col in year_cols:
            df[col] = df[col].apply(self.clean_number)
            
        return df, year_cols

class FinancialAnalyzer:
    """Financial analysis using small models"""
    
    def __init__(self):
        self.extractor = FinancialDataExtractor()
        self.sentiment_model = None
        self.analysis_model = None
        self.load_models()

    def load_models(self):
        """Load the required models"""
        try:
            # Load FinBERT for sentiment analysis
            self.sentiment_model = pipeline(
                "text-classification",
                model="ProsusAI/finbert",
                torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
                truncation=True
            )
            
            # Load small model for analysis
            self.analysis_model = pipeline(
                "text-generation",
                model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
                torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32
            )
            
            logger.info("Models loaded successfully")
        except Exception as e:
            logger.error(f"Error loading models: {str(e)}")
            raise

    def calculate_metrics(self, income_df: pd.DataFrame, balance_df: pd.DataFrame, year_cols: list) -> dict:
        """Calculate financial metrics"""
        metrics = {}
        
        for year in year_cols:
            # Income Statement metrics
            income = {
                'Revenue': income_df[income_df['Period'].str.contains('Total Net Revenue|Revenue', na=False, case=False)][year].iloc[0],
                'COGS': income_df[income_df['Period'].str.contains('Cost of Goods Sold', na=False, case=False)][year].iloc[0],
                'Operating_Expenses': income_df[income_df['Period'].str.contains('Total Expenses', na=False, case=False)][year].iloc[0],
                'EBIT': income_df[income_df['Period'].str.contains('Earnings Before Interest & Taxes', na=False, case=False)][year].iloc[0],
                'Net_Income': income_df[income_df['Period'].str.contains('Net Income|Net Earnings', na=False, case=False)][year].iloc[-1]
            }
            
            # Balance Sheet metrics
            balance = {
                'Total_Assets': balance_df[balance_df['Period'].str.contains('Total Assets', na=False, case=False)][year].iloc[0],
                'Current_Assets': balance_df[balance_df['Period'].str.contains('Total current assets', na=False, case=False)][year].iloc[0],
                'Total_Liabilities': balance_df[balance_df['Period'].str.contains('Total Liabilities', na=False, case=False)][year].iloc[0],
                'Current_Liabilities': balance_df[balance_df['Period'].str.contains('Total current liabilities', na=False, case=False)][year].iloc[0],
                'Equity': balance_df[balance_df['Period'].str.contains("Shareholder's Equity", na=False, case=False)][year].iloc[-1]
            }
            
            # Calculate ratios
            metrics[year] = {
                'Profitability': {
                    'Gross_Margin': ((income['Revenue'] - income['COGS']) / income['Revenue']) * 100,
                    'Operating_Margin': (income['EBIT'] / income['Revenue']) * 100,
                    'Net_Margin': (income['Net_Income'] / income['Revenue']) * 100,
                    'ROE': (income['Net_Income'] / balance['Equity']) * 100,
                    'ROA': (income['Net_Income'] / balance['Total_Assets']) * 100
                },
                'Liquidity': {
                    'Current_Ratio': balance['Current_Assets'] / balance['Current_Liabilities'],
                    'Working_Capital': balance['Current_Assets'] - balance['Current_Liabilities']
                },
                'Growth': {
                    'Revenue': income['Revenue'],
                    'Net_Income': income['Net_Income'],
                    'Total_Assets': balance['Total_Assets']
                }
            }
        
        return metrics

    def analyze_financials(self, income_df: pd.DataFrame, balance_df: pd.DataFrame) -> str:
        """Generate financial analysis"""
        try:
            # Extract and clean data
            income_df, year_cols = self.extractor.extract_data(income_df)
            balance_df, _ = self.extractor.extract_data(balance_df)
            
            # Calculate metrics
            metrics = self.calculate_metrics(income_df, balance_df, year_cols)
            
            # Get latest and earliest years
            latest_year = max(year_cols)
            earliest_year = min(year_cols)
            
            # Calculate growth
            revenue_growth = ((metrics[latest_year]['Growth']['Revenue'] / metrics[earliest_year]['Growth']['Revenue']) - 1) * 100
            profit_growth = ((metrics[latest_year]['Growth']['Net_Income'] / metrics[earliest_year]['Growth']['Net_Income']) - 1) * 100
            
            # Generate analysis context
            context = f"""Financial Analysis ({earliest_year}-{latest_year}):

Performance Metrics:
- Revenue Growth: {revenue_growth:.1f}%
- Profit Growth: {profit_growth:.1f}%
- Current Gross Margin: {metrics[latest_year]['Profitability']['Gross_Margin']:.1f}%
- Current Net Margin: {metrics[latest_year]['Profitability']['Net_Margin']:.1f}%
- ROE: {metrics[latest_year]['Profitability']['ROE']:.1f}%
- Current Ratio: {metrics[latest_year]['Liquidity']['Current_Ratio']:.2f}

Trends:
- Revenue has grown from ${metrics[earliest_year]['Growth']['Revenue']:,.0f} to ${metrics[latest_year]['Growth']['Revenue']:,.0f}
- Net Income has changed from ${metrics[earliest_year]['Growth']['Net_Income']:,.0f} to ${metrics[latest_year]['Growth']['Net_Income']:,.0f}
- Profitability margins show {('improving' if metrics[latest_year]['Profitability']['Net_Margin'] > metrics[earliest_year]['Profitability']['Net_Margin'] else 'declining')} trend"""

            # Get sentiment
            sentiment = self.sentiment_model(context[:512])[0]
            
            # Generate detailed analysis
            analysis = self.analysis_model(
                f"[INST] As a financial analyst, provide a detailed analysis of this company:\n\n{context}\n\nInclude:\n1. Financial health assessment\n2. Key performance insights\n3. Strategic recommendations [/INST]",
                max_length=1500,
                num_return_sequences=1,
                do_sample=True,
                temperature=0.7
            )[0]['generated_text']
            
            # Format output
            output = f"""# Financial Analysis Report

## Overall Sentiment: {sentiment['label'].upper()} ({sentiment['score']:.1%})

## Key Performance Indicators ({latest_year})
- Gross Margin: {metrics[latest_year]['Profitability']['Gross_Margin']:.1f}%
- Operating Margin: {metrics[latest_year]['Profitability']['Operating_Margin']:.1f}%
- Net Margin: {metrics[latest_year]['Profitability']['Net_Margin']:.1f}%
- ROE: {metrics[latest_year]['Profitability']['ROE']:.1f}%
- Current Ratio: {metrics[latest_year]['Liquidity']['Current_Ratio']:.2f}

## Performance Trends ({earliest_year}-{latest_year})
- Revenue Growth: {revenue_growth:.1f}%
- Profit Growth: {profit_growth:.1f}%
- Working Capital: ${metrics[latest_year]['Liquidity']['Working_Capital']:,.0f}

## Analysis
{analysis}"""
            
            return output
            
        except Exception as e:
            logger.error(f"Analysis error: {str(e)}")
            raise

def analyze_statements(income_statement, balance_sheet):
    """Main function to analyze financial statements"""
    try:
        if not income_statement or not balance_sheet:
            return "Please upload both Income Statement and Balance Sheet CSV files."
            
        # Read files
        income_df = pd.read_csv(income_statement.name)
        balance_df = pd.read_csv(balance_sheet.name)
        
        # Create analyzer and process
        analyzer = FinancialAnalyzer()
        result = analyzer.analyze_financials(income_df, balance_df)
        
        # Clear memory
        clear_gpu_memory()
        
        return result
        
    except Exception as e:
        logger.error(f"Analysis error: {str(e)}")
        return f"""Analysis Error: {str(e)}
        
        Please ensure your CSV files:
        1. Have clear year columns
        2. Contain recognizable financial metrics
        3. Use consistent number formatting"""

# Create Gradio interface
iface = gr.Interface(
    fn=analyze_statements,
    inputs=[
        gr.File(label="Upload Income Statement (CSV)", file_types=[".csv"]),
        gr.File(label="Upload Balance Sheet (CSV)", file_types=[".csv"])
    ],
    outputs=gr.Markdown(),
    title="Financial Statement Analyzer",
    description="""## Financial Analysis Tool

Upload your financial statements to get:
- Performance Analysis
- Key Metrics & Ratios
- Trend Analysis
- Strategic Recommendations""",
    examples=None
)

# Launch the interface
if __name__ == "__main__":
    try:
        iface.launch(server_name="0.0.0.0", server_port=7860)
    except Exception as e:
        logger.error(f"Launch error: {str(e)}")
        sys.exit(1)