walaa2022's picture
Update app.py
6e9bd28 verified
raw
history blame
7.21 kB
import os
import gradio as gr
import pandas as pd
from transformers import pipeline
import torch
import sys
import logging
import io
from huggingface_hub import login
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Get token securely from environment variable
hf_token = os.getenv('HUGGINGFACE_TOKEN')
# Check if the token is available
if hf_token:
# Log in to Hugging Face Hub
login(token=hf_token)
print("Successfully logged in to Hugging Face Hub.")
else:
print("HF_TOKEN environment variable not found. Please set it in the Space settings.")
class FinancialAnalyzer:
def __init__(self):
"""Initialize models with error handling"""
try:
# 1. Llama 2 for strategic analysis
self.strategic_analyzer = pipeline(
"text-generation",
model="meta-llama/Llama-2-7b-chat-hf",
device_map="auto"
)
logger.info("Llama 2 initialized successfully")
# 2. FinBERT for financial sentiment
self.financial_analyzer = pipeline(
"text-classification",
model="ProsusAI/finbert",
return_all_scores=True
)
logger.info("FinBERT initialized successfully")
# 3. Falcon for recommendations
self.recommendation_generator = pipeline(
"text-generation",
model="tiiuae/falcon-7b-instruct",
device_map="auto"
)
logger.info("Falcon initialized successfully")
except Exception as e:
logger.error(f"Error initializing models: {str(e)}")
raise
def read_csv_file(self, file_obj):
"""Safely read CSV file"""
try:
if file_obj is None:
raise ValueError("No file provided")
return pd.read_csv(file_obj)
except Exception as e:
logger.error(f"Error reading CSV file: {str(e)}")
raise
def generate_strategic_analysis(self, financial_data):
"""Generate strategic analysis using Llama 2"""
try:
prompt = f"""[INST] As a senior financial analyst, analyze these financial statements:
Financial Data:
{financial_data}
Provide:
1. Business Health Assessment
2. Key Strategic Insights
3. Market Position Analysis
4. Growth Opportunities
5. Risk Factors [/INST]"""
response = self.strategic_analyzer(
prompt,
max_length=1000,
temperature=0.7
)
return response[0]['generated_text']
except Exception as e:
logger.error(f"Error in strategic analysis: {str(e)}")
return "Error generating strategic analysis"
def analyze_sentiment(self, text):
"""Analyze financial sentiment using FinBERT"""
try:
return self.financial_analyzer(text)
except Exception as e:
logger.error(f"Error in sentiment analysis: {str(e)}")
return [{"label": "error", "score": 1.0}]
def generate_recommendations(self, analysis):
"""Generate recommendations using Falcon"""
try:
prompt = f"""Based on this financial analysis:
{analysis}
Provide specific, actionable recommendations covering:
1. Strategic Initiatives
2. Operational Improvements
3. Financial Management
4. Risk Mitigation
5. Growth Strategy"""
response = self.recommendation_generator(
prompt,
max_length=800,
temperature=0.6
)
return response[0]['generated_text']
except Exception as e:
logger.error(f"Error generating recommendations: {str(e)}")
return "Error generating recommendations"
def analyze_financial_statements(income_statement, balance_sheet):
"""Main analysis function with error handling"""
try:
# Initialize analyzer
analyzer = FinancialAnalyzer()
# Read CSV files safely
logger.info("Reading input files...")
income_df = analyzer.read_csv_file(income_statement)
balance_df = analyzer.read_csv_file(balance_sheet)
# Prepare financial data
financial_data = f"""
Income Statement Summary:
{income_df.to_string()}
Balance Sheet Summary:
{balance_df.to_string()}
"""
# Generate analyses
logger.info("Generating analysis...")
strategic_analysis = analyzer.generate_strategic_analysis(financial_data)
sentiment = analyzer.analyze_sentiment(strategic_analysis)
recommendations = analyzer.generate_recommendations(strategic_analysis)
# Format output
logger.info("Formatting results...")
return format_results(strategic_analysis, sentiment, recommendations)
except Exception as e:
logger.error(f"Error in analysis: {str(e)}")
return f"""Error analyzing files: {str(e)}
Please check:
1. Files are in correct CSV format
2. Files are not corrupted
3. Files contain the expected data
If the problem persists, try uploading the files again."""
def format_results(analysis, sentiment, recommendations):
"""Format analysis results"""
try:
output = "# Financial Analysis Report\n\n"
# Strategic Analysis
output += "## Strategic Analysis\n\n"
output += analysis + "\n\n"
# Sentiment Analysis
output += "## Market Sentiment\n\n"
for score in sentiment[0]:
output += f"- {score['label']}: {score['score']:.2%}\n"
output += "\n"
# Recommendations
output += "## Strategic Recommendations\n\n"
output += recommendations
return output
except Exception as e:
logger.error(f"Error formatting results: {str(e)}")
return "Error formatting analysis results"
# Create Gradio interface
iface = gr.Interface(
fn=analyze_financial_statements,
inputs=[
gr.File(label="Income Statement (CSV)"),
gr.File(label="Balance Sheet (CSV)")
],
outputs=gr.Markdown(),
title="AI-Powered Financial Statement Analysis",
description="""Upload your financial statements for comprehensive analysis using:
- Llama 2: Strategic Analysis
- FinBERT: Financial Sentiment Analysis
- Falcon: Strategic Recommendations""",
examples=[
[
"OFINTECH-Income Statement-template.csv",
"OFINTECH Balance Sheet template.csv"
]
]
)
# Launch the interface
if __name__ == "__main__":
try:
iface.launch()
except Exception as e:
logger.error(f"Error launching application: {str(e)}")
sys.exit(1)