Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,9 +4,8 @@ import pandas as pd
|
|
4 |
import torch
|
5 |
import logging
|
6 |
import gc
|
7 |
-
import
|
8 |
-
|
9 |
-
import psutil
|
10 |
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
11 |
|
12 |
# Setup logging
|
@@ -20,33 +19,15 @@ logger = logging.getLogger(__name__)
|
|
20 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
logger.info(f"Using device: {DEVICE}")
|
22 |
|
23 |
-
def monitor_memory():
|
24 |
-
"""Monitor system memory usage"""
|
25 |
-
try:
|
26 |
-
process = psutil.Process(os.getpid())
|
27 |
-
memory_info = process.memory_info()
|
28 |
-
logger.info(f"Memory usage: {memory_info.rss / 1024 / 1024:.2f} MB")
|
29 |
-
if DEVICE == "cuda":
|
30 |
-
logger.info(f"GPU Memory: {torch.cuda.max_memory_allocated() / 1024 / 1024:.2f} MB")
|
31 |
-
except Exception as e:
|
32 |
-
logger.error(f"Error monitoring memory: {str(e)}")
|
33 |
-
|
34 |
def clear_gpu_memory():
|
35 |
"""Utility function to clear GPU memory"""
|
36 |
if DEVICE == "cuda":
|
37 |
torch.cuda.empty_cache()
|
38 |
gc.collect()
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
raise TimeoutError(f"Operation timed out after {seconds} seconds")
|
44 |
-
signal.signal(signal.SIGALRM, signal_handler)
|
45 |
-
signal.alarm(seconds)
|
46 |
-
try:
|
47 |
-
yield
|
48 |
-
finally:
|
49 |
-
signal.alarm(0)
|
50 |
|
51 |
class ModelManager:
|
52 |
"""Handles model loading and inference"""
|
@@ -59,40 +40,46 @@ class ModelManager:
|
|
59 |
self.max_cache_size = 2
|
60 |
|
61 |
def load_model(self, model_name, model_type="sentiment", timeout=300):
|
62 |
-
"""Load model and tokenizer with timeout"""
|
63 |
try:
|
64 |
if model_name in self.model_cache:
|
65 |
self.models[model_name] = self.model_cache[model_name]
|
66 |
logger.info(f"Loaded {model_name} from cache")
|
67 |
return
|
68 |
|
69 |
-
|
70 |
-
if
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
except Exception as e:
|
94 |
logger.error(f"Error loading model {model_name}: {str(e)}")
|
95 |
-
raise
|
96 |
|
97 |
def cache_model(self, model_name, model):
|
98 |
"""Cache model for faster reloading"""
|
@@ -132,9 +119,10 @@ class FinancialAnalyzer:
|
|
132 |
"recommendation": "tiiuae/falcon-rw-1b"
|
133 |
}
|
134 |
|
135 |
-
# Load sentiment model at initialization
|
136 |
try:
|
137 |
-
self.model_manager.load_model(self.models["sentiment"], "sentiment")
|
|
|
138 |
except Exception as e:
|
139 |
logger.error(f"Failed to initialize sentiment model: {str(e)}")
|
140 |
raise
|
@@ -186,12 +174,17 @@ class FinancialAnalyzer:
|
|
186 |
if len(text) == 0:
|
187 |
raise ValueError("Empty text input")
|
188 |
|
|
|
|
|
|
|
|
|
|
|
189 |
# Tokenize with proper padding and truncation
|
190 |
inputs = tokenizer(
|
191 |
text,
|
192 |
return_tensors="pt",
|
193 |
truncation=True,
|
194 |
-
max_length=
|
195 |
padding=True
|
196 |
).to(DEVICE)
|
197 |
|
@@ -217,10 +210,16 @@ class FinancialAnalyzer:
|
|
217 |
return [{"label": "error", "score": 1.0}]
|
218 |
|
219 |
def generate_analysis(self, financial_data):
|
220 |
-
"""Generate strategic analysis with improved prompting"""
|
221 |
try:
|
222 |
model_name = self.models["analysis"]
|
223 |
-
self.model_manager.load_model(model_name, "generation")
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
prompt = f"""[INST] As a senior financial analyst, provide a detailed analysis of these financial statements:
|
226 |
|
@@ -256,6 +255,7 @@ class FinancialAnalyzer:
|
|
256 |
|
257 |
Provide specific metrics and detailed explanations for each section. [/INST]"""
|
258 |
|
|
|
259 |
response = self.model_manager.get_model(model_name)(
|
260 |
prompt,
|
261 |
max_length=2000,
|
@@ -283,12 +283,27 @@ class FinancialAnalyzer:
|
|
283 |
sections = text.split('\n\n')
|
284 |
formatted_sections = []
|
285 |
|
|
|
286 |
for section in sections:
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
return '\n\n'.join(formatted_sections)
|
294 |
except Exception as e:
|
@@ -296,10 +311,16 @@ class FinancialAnalyzer:
|
|
296 |
return text
|
297 |
|
298 |
def generate_recommendations(self, analysis):
|
299 |
-
"""Generate recommendations with
|
300 |
try:
|
301 |
model_name = self.models["recommendation"]
|
302 |
-
self.model_manager.load_model(model_name, "generation")
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
|
304 |
prompt = f"""Based on this financial analysis, provide detailed strategic recommendations:
|
305 |
|
@@ -341,6 +362,7 @@ class FinancialAnalyzer:
|
|
341 |
|
342 |
Format each section with clear, actionable bullet points."""
|
343 |
|
|
|
344 |
response = self.model_manager.get_model(model_name)(
|
345 |
prompt,
|
346 |
max_length=2000,
|
@@ -368,12 +390,27 @@ class FinancialAnalyzer:
|
|
368 |
sections = text.split('\n\n')
|
369 |
formatted_sections = []
|
370 |
|
|
|
371 |
for section in sections:
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
|
378 |
return '\n\n'.join(formatted_sections)
|
379 |
except Exception as e:
|
@@ -383,7 +420,8 @@ class FinancialAnalyzer:
|
|
383 |
def analyze_financial_statements(income_statement, balance_sheet):
|
384 |
"""Main analysis function with improved error handling and logging"""
|
385 |
try:
|
386 |
-
|
|
|
387 |
analyzer = FinancialAnalyzer()
|
388 |
|
389 |
# Validate inputs
|
@@ -391,8 +429,9 @@ def analyze_financial_statements(income_statement, balance_sheet):
|
|
391 |
return "Error: Please provide both income statement and balance sheet files"
|
392 |
|
393 |
# Process financial statements
|
394 |
-
logger.info("Processing
|
395 |
income_summary = analyzer.read_csv(income_statement)
|
|
|
396 |
balance_summary = analyzer.read_csv(balance_sheet)
|
397 |
|
398 |
financial_data = f"""
|
@@ -404,20 +443,32 @@ def analyze_financial_statements(income_statement, balance_sheet):
|
|
404 |
"""
|
405 |
|
406 |
# Generate analysis
|
407 |
-
logger.info("
|
408 |
analysis = analyzer.generate_analysis(financial_data)
|
|
|
|
|
|
|
409 |
|
410 |
# Analyze sentiment
|
411 |
-
logger.info("
|
412 |
sentiment = analyzer.analyze_sentiment(analysis)
|
|
|
|
|
|
|
413 |
|
414 |
# Generate recommendations
|
415 |
-
logger.info("
|
416 |
recommendations = analyzer.generate_recommendations(analysis)
|
|
|
|
|
|
|
417 |
|
418 |
# Format results
|
|
|
419 |
result = format_results(analysis, sentiment, recommendations)
|
420 |
-
|
|
|
|
|
421 |
return result
|
422 |
|
423 |
except Exception as e:
|
@@ -429,7 +480,9 @@ def analyze_financial_statements(income_statement, balance_sheet):
|
|
429 |
Please verify:
|
430 |
1. Files are valid CSV format
|
431 |
2. Files contain required financial data
|
432 |
-
3. File size is within limits
|
|
|
|
|
433 |
|
434 |
def format_results(analysis, sentiment, recommendations):
|
435 |
"""Format analysis results with improved validation and formatting"""
|
@@ -458,34 +511,67 @@ def format_results(analysis, sentiment, recommendations):
|
|
458 |
logger.error(f"Formatting error: {str(e)}")
|
459 |
return "Error formatting results"
|
460 |
|
461 |
-
# Create Gradio interface with improved error handling
|
462 |
iface = gr.Interface(
|
463 |
fn=analyze_financial_statements,
|
464 |
inputs=[
|
465 |
-
gr.File(
|
466 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
467 |
],
|
468 |
outputs=gr.Markdown(),
|
469 |
-
title="Financial Statement Analyzer",
|
470 |
-
description="""
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
479 |
flagging_mode="never"
|
480 |
)
|
481 |
|
|
|
482 |
if __name__ == "__main__":
|
483 |
try:
|
|
|
484 |
iface.queue()
|
|
|
|
|
485 |
iface.launch(
|
486 |
share=False,
|
487 |
server_name="0.0.0.0",
|
488 |
-
server_port=7860
|
|
|
|
|
489 |
)
|
490 |
except Exception as e:
|
491 |
logger.error(f"Launch error: {str(e)}")
|
|
|
4 |
import torch
|
5 |
import logging
|
6 |
import gc
|
7 |
+
import threading
|
8 |
+
import concurrent.futures
|
|
|
9 |
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
10 |
|
11 |
# Setup logging
|
|
|
19 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
logger.info(f"Using device: {DEVICE}")
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def clear_gpu_memory():
|
23 |
"""Utility function to clear GPU memory"""
|
24 |
if DEVICE == "cuda":
|
25 |
torch.cuda.empty_cache()
|
26 |
gc.collect()
|
27 |
|
28 |
+
class ModelLoadingError(Exception):
|
29 |
+
"""Custom exception for model loading errors"""
|
30 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
class ModelManager:
|
33 |
"""Handles model loading and inference"""
|
|
|
40 |
self.max_cache_size = 2
|
41 |
|
42 |
def load_model(self, model_name, model_type="sentiment", timeout=300):
|
43 |
+
"""Load model and tokenizer with thread-safe timeout"""
|
44 |
try:
|
45 |
if model_name in self.model_cache:
|
46 |
self.models[model_name] = self.model_cache[model_name]
|
47 |
logger.info(f"Loaded {model_name} from cache")
|
48 |
return
|
49 |
|
50 |
+
def load_model_task():
|
51 |
+
if model_type == "sentiment":
|
52 |
+
self.tokenizers[model_name] = AutoTokenizer.from_pretrained(
|
53 |
+
model_name,
|
54 |
+
use_fast=True
|
55 |
+
)
|
56 |
+
self.models[model_name] = AutoModelForSequenceClassification.from_pretrained(
|
57 |
+
model_name,
|
58 |
+
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
|
59 |
+
).to(self.device)
|
60 |
+
else:
|
61 |
+
self.models[model_name] = pipeline(
|
62 |
+
"text-generation",
|
63 |
+
model=model_name,
|
64 |
+
device_map="auto" if self.device == "cuda" else None,
|
65 |
+
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
|
66 |
+
)
|
67 |
+
|
68 |
+
# Use ThreadPoolExecutor for timeout
|
69 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
|
70 |
+
future = executor.submit(load_model_task)
|
71 |
+
try:
|
72 |
+
future.result(timeout=timeout)
|
73 |
+
except concurrent.futures.TimeoutError:
|
74 |
+
raise ModelLoadingError(f"Model loading timed out after {timeout} seconds")
|
75 |
+
|
76 |
+
# Cache the model
|
77 |
+
self.cache_model(model_name, self.models[model_name])
|
78 |
+
logger.info(f"Successfully loaded model: {model_name}")
|
79 |
|
80 |
except Exception as e:
|
81 |
logger.error(f"Error loading model {model_name}: {str(e)}")
|
82 |
+
raise ModelLoadingError(f"Failed to load model {model_name}: {str(e)}")
|
83 |
|
84 |
def cache_model(self, model_name, model):
|
85 |
"""Cache model for faster reloading"""
|
|
|
119 |
"recommendation": "tiiuae/falcon-rw-1b"
|
120 |
}
|
121 |
|
122 |
+
# Load sentiment model at initialization with longer timeout
|
123 |
try:
|
124 |
+
self.model_manager.load_model(self.models["sentiment"], "sentiment", timeout=600)
|
125 |
+
logger.info("Sentiment model initialized successfully")
|
126 |
except Exception as e:
|
127 |
logger.error(f"Failed to initialize sentiment model: {str(e)}")
|
128 |
raise
|
|
|
174 |
if len(text) == 0:
|
175 |
raise ValueError("Empty text input")
|
176 |
|
177 |
+
# Truncate text if too long
|
178 |
+
max_length = 512
|
179 |
+
if len(text.split()) > max_length:
|
180 |
+
logger.warning(f"Text length exceeds {max_length} tokens. Truncating...")
|
181 |
+
|
182 |
# Tokenize with proper padding and truncation
|
183 |
inputs = tokenizer(
|
184 |
text,
|
185 |
return_tensors="pt",
|
186 |
truncation=True,
|
187 |
+
max_length=max_length,
|
188 |
padding=True
|
189 |
).to(DEVICE)
|
190 |
|
|
|
210 |
return [{"label": "error", "score": 1.0}]
|
211 |
|
212 |
def generate_analysis(self, financial_data):
|
213 |
+
"""Generate strategic analysis with improved prompting and error handling"""
|
214 |
try:
|
215 |
model_name = self.models["analysis"]
|
216 |
+
self.model_manager.load_model(model_name, "generation", timeout=600)
|
217 |
+
|
218 |
+
# Truncate financial data if too long
|
219 |
+
max_data_length = 1000
|
220 |
+
if len(financial_data.split()) > max_data_length:
|
221 |
+
logger.warning(f"Financial data too long. Truncating to {max_data_length} tokens...")
|
222 |
+
financial_data = ' '.join(financial_data.split()[:max_data_length])
|
223 |
|
224 |
prompt = f"""[INST] As a senior financial analyst, provide a detailed analysis of these financial statements:
|
225 |
|
|
|
255 |
|
256 |
Provide specific metrics and detailed explanations for each section. [/INST]"""
|
257 |
|
258 |
+
logger.info("Generating analysis...")
|
259 |
response = self.model_manager.get_model(model_name)(
|
260 |
prompt,
|
261 |
max_length=2000,
|
|
|
283 |
sections = text.split('\n\n')
|
284 |
formatted_sections = []
|
285 |
|
286 |
+
current_section = None
|
287 |
for section in sections:
|
288 |
+
section = section.strip()
|
289 |
+
if not section:
|
290 |
+
continue
|
291 |
+
|
292 |
+
# Check if this is a new section
|
293 |
+
if any(section.startswith(str(i)) for i in range(1, 6)):
|
294 |
+
current_section = f"### {section}"
|
295 |
+
formatted_sections.append(current_section)
|
296 |
+
elif current_section:
|
297 |
+
# Add bullet points to content under sections
|
298 |
+
lines = section.split('\n')
|
299 |
+
formatted_lines = []
|
300 |
+
for line in lines:
|
301 |
+
line = line.strip()
|
302 |
+
if line:
|
303 |
+
if not line.startswith('- '):
|
304 |
+
line = f"- {line}"
|
305 |
+
formatted_lines.append(line)
|
306 |
+
formatted_sections.append('\n'.join(formatted_lines))
|
307 |
|
308 |
return '\n\n'.join(formatted_sections)
|
309 |
except Exception as e:
|
|
|
311 |
return text
|
312 |
|
313 |
def generate_recommendations(self, analysis):
|
314 |
+
"""Generate recommendations with improved prompting and error handling"""
|
315 |
try:
|
316 |
model_name = self.models["recommendation"]
|
317 |
+
self.model_manager.load_model(model_name, "generation", timeout=600)
|
318 |
+
|
319 |
+
# Truncate analysis if too long
|
320 |
+
max_analysis_length = 1000
|
321 |
+
if len(analysis.split()) > max_analysis_length:
|
322 |
+
logger.warning(f"Analysis too long. Truncating to {max_analysis_length} tokens...")
|
323 |
+
analysis = ' '.join(analysis.split()[:max_analysis_length])
|
324 |
|
325 |
prompt = f"""Based on this financial analysis, provide detailed strategic recommendations:
|
326 |
|
|
|
362 |
|
363 |
Format each section with clear, actionable bullet points."""
|
364 |
|
365 |
+
logger.info("Generating recommendations...")
|
366 |
response = self.model_manager.get_model(model_name)(
|
367 |
prompt,
|
368 |
max_length=2000,
|
|
|
390 |
sections = text.split('\n\n')
|
391 |
formatted_sections = []
|
392 |
|
393 |
+
current_section = None
|
394 |
for section in sections:
|
395 |
+
section = section.strip()
|
396 |
+
if not section:
|
397 |
+
continue
|
398 |
+
|
399 |
+
# Check if this is a new section
|
400 |
+
if any(section.startswith(str(i)) for i in range(1, 6)):
|
401 |
+
current_section = f"### {section}"
|
402 |
+
formatted_sections.append(current_section)
|
403 |
+
elif current_section:
|
404 |
+
# Add bullet points to content under sections
|
405 |
+
lines = section.split('\n')
|
406 |
+
formatted_lines = []
|
407 |
+
for line in lines:
|
408 |
+
line = line.strip()
|
409 |
+
if line:
|
410 |
+
if not line.startswith('- '):
|
411 |
+
line = f"- {line}"
|
412 |
+
formatted_lines.append(line)
|
413 |
+
formatted_sections.append('\n'.join(formatted_lines))
|
414 |
|
415 |
return '\n\n'.join(formatted_sections)
|
416 |
except Exception as e:
|
|
|
420 |
def analyze_financial_statements(income_statement, balance_sheet):
|
421 |
"""Main analysis function with improved error handling and logging"""
|
422 |
try:
|
423 |
+
clear_gpu_memory()
|
424 |
+
logger.info("Starting financial analysis...")
|
425 |
analyzer = FinancialAnalyzer()
|
426 |
|
427 |
# Validate inputs
|
|
|
429 |
return "Error: Please provide both income statement and balance sheet files"
|
430 |
|
431 |
# Process financial statements
|
432 |
+
logger.info("Processing income statement...")
|
433 |
income_summary = analyzer.read_csv(income_statement)
|
434 |
+
logger.info("Processing balance sheet...")
|
435 |
balance_summary = analyzer.read_csv(balance_sheet)
|
436 |
|
437 |
financial_data = f"""
|
|
|
443 |
"""
|
444 |
|
445 |
# Generate analysis
|
446 |
+
logger.info("Starting strategic analysis generation...")
|
447 |
analysis = analyzer.generate_analysis(financial_data)
|
448 |
+
if "Error" in analysis:
|
449 |
+
logger.error("Strategic analysis generation failed")
|
450 |
+
return "Error: Failed to generate strategic analysis. Please try again."
|
451 |
|
452 |
# Analyze sentiment
|
453 |
+
logger.info("Starting sentiment analysis...")
|
454 |
sentiment = analyzer.analyze_sentiment(analysis)
|
455 |
+
if sentiment[0][0]['label'] == "error":
|
456 |
+
logger.error("Sentiment analysis failed")
|
457 |
+
return "Error: Failed to analyze sentiment. Please try again."
|
458 |
|
459 |
# Generate recommendations
|
460 |
+
logger.info("Starting recommendations generation...")
|
461 |
recommendations = analyzer.generate_recommendations(analysis)
|
462 |
+
if "Error" in recommendations:
|
463 |
+
logger.error("Recommendations generation failed")
|
464 |
+
return "Error: Failed to generate recommendations. Please try again."
|
465 |
|
466 |
# Format results
|
467 |
+
logger.info("Formatting final results...")
|
468 |
result = format_results(analysis, sentiment, recommendations)
|
469 |
+
clear_gpu_memory()
|
470 |
+
|
471 |
+
logger.info("Analysis completed successfully")
|
472 |
return result
|
473 |
|
474 |
except Exception as e:
|
|
|
480 |
Please verify:
|
481 |
1. Files are valid CSV format
|
482 |
2. Files contain required financial data
|
483 |
+
3. File size is within limits (max 10MB)
|
484 |
+
4. Data contains numeric columns
|
485 |
+
5. Files are not corrupted"""
|
486 |
|
487 |
def format_results(analysis, sentiment, recommendations):
|
488 |
"""Format analysis results with improved validation and formatting"""
|
|
|
511 |
logger.error(f"Formatting error: {str(e)}")
|
512 |
return "Error formatting results"
|
513 |
|
514 |
+
# Create Gradio interface with improved error handling and guidance
|
515 |
iface = gr.Interface(
|
516 |
fn=analyze_financial_statements,
|
517 |
inputs=[
|
518 |
+
gr.File(
|
519 |
+
label="Income Statement (CSV)",
|
520 |
+
info="Upload income statement in CSV format with numeric data columns"
|
521 |
+
),
|
522 |
+
gr.File(
|
523 |
+
label="Balance Sheet (CSV)",
|
524 |
+
info="Upload balance sheet in CSV format with numeric data columns"
|
525 |
+
)
|
526 |
],
|
527 |
outputs=gr.Markdown(),
|
528 |
+
title="AI-Powered Financial Statement Analyzer",
|
529 |
+
description="""## Financial Statement Analysis Tool
|
530 |
+
|
531 |
+
This tool provides comprehensive financial analysis using advanced AI models:
|
532 |
+
- Strategic Analysis: In-depth analysis of financial position and trends
|
533 |
+
- Sentiment Analysis: Assessment of financial health sentiment
|
534 |
+
- Strategic Recommendations: Actionable insights and recommendations
|
535 |
+
|
536 |
+
Requirements:
|
537 |
+
- Files must be in CSV format
|
538 |
+
- Must contain numeric data columns
|
539 |
+
- Maximum file size: 10MB
|
540 |
+
- Standard financial statement format preferred
|
541 |
+
|
542 |
+
Note: Analysis may take a few minutes to complete.""",
|
543 |
+
article="""### Usage Tips:
|
544 |
+
1. Ensure your CSV files have clear column headers
|
545 |
+
2. Verify that numeric data is properly formatted
|
546 |
+
3. Wait for the analysis to complete - it may take several minutes
|
547 |
+
4. The more detailed your financial data, the better the analysis
|
548 |
+
|
549 |
+
For optimal results, include key financial metrics such as:
|
550 |
+
- Revenue
|
551 |
+
- Expenses
|
552 |
+
- Profits/Losses
|
553 |
+
- Assets
|
554 |
+
- Liabilities
|
555 |
+
- Equity""",
|
556 |
+
examples=[
|
557 |
+
["example_income_statement.csv", "example_balance_sheet.csv"]
|
558 |
+
],
|
559 |
flagging_mode="never"
|
560 |
)
|
561 |
|
562 |
+
# Launch the interface with proper error handling
|
563 |
if __name__ == "__main__":
|
564 |
try:
|
565 |
+
# Enable queue for better handling of multiple requests
|
566 |
iface.queue()
|
567 |
+
|
568 |
+
# Launch with specific server configuration
|
569 |
iface.launch(
|
570 |
share=False,
|
571 |
server_name="0.0.0.0",
|
572 |
+
server_port=7860,
|
573 |
+
show_error=True,
|
574 |
+
max_threads=4
|
575 |
)
|
576 |
except Exception as e:
|
577 |
logger.error(f"Launch error: {str(e)}")
|