walaa2022's picture
Update app.py
c6b42a6 verified
raw
history blame
6.31 kB
import gradio as gr
import pandas as pd
import numpy as np
import json
import re
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification
import torch
class FinancialAnalyzer:
def __init__(self):
print("Initializing Financial Analyzer...")
self.initialize_models()
def initialize_models(self):
print("Loading models...")
self.tiny_tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
self.tiny_model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
self.finbert_tokenizer = AutoTokenizer.from_pretrained("ProsusAI/finbert")
self.finbert_model = AutoModelForSequenceClassification.from_pretrained("ProsusAI/finbert")
print("Models loaded successfully!")
def parse_markdown_table(self, markdown_content):
"""Parse markdown table into pandas DataFrame"""
# Split content into lines
lines = markdown_content.strip().split('\n')
# Find table start (line with |)
table_lines = []
headers = None
current_table = []
for line in lines:
if '|' in line:
# Skip separator lines (contains ---)
if '-|-' in line:
continue
# Clean and split the line
row = [cell.strip() for cell in line.split('|')[1:-1]]
if headers is None:
headers = row
else:
current_table.append(row)
# Create DataFrame
df = pd.DataFrame(current_table, columns=headers)
return df
def extract_financial_data(self, markdown_content):
"""Convert markdown content to a structured text format"""
# Remove markdown formatting
clean_text = markdown_content.replace('#', '').replace('*', '')
# Extract tables
tables = {}
current_section = "General"
for line in clean_text.split('\n'):
if line.strip() and not line.startswith('|'):
current_section = line.strip()
elif '|' in line:
if current_section not in tables:
tables[current_section] = []
tables[current_section].append(line)
# Convert to text format
structured_text = []
for section, content in tables.items():
structured_text.append(f"\n{section}:")
if content:
df = self.parse_markdown_table('\n'.join(content))
structured_text.append(df.to_string())
return '\n'.join(structured_text)
def analyze_financials(self, balance_sheet_file, income_stmt_file):
"""Main analysis function"""
try:
# Read markdown files
with open(balance_sheet_file, 'r') as f:
balance_sheet_content = f.read()
with open(income_stmt_file, 'r') as f:
income_stmt_content = f.read()
# Convert to structured text
structured_balance = self.extract_financial_data(balance_sheet_content)
structured_income = self.extract_financial_data(income_stmt_content)
# Create analysis prompt
prompt = f"""<human>Please analyze these financial statements and provide detailed insights:
Financial Statements Analysis (2021-2025)
Balance Sheet Summary:
{structured_balance}
Income Statement Summary:
{structured_income}
Please provide a detailed analysis including:
1. Financial Health Assessment
- Liquidity position
- Capital structure
- Asset efficiency
2. Profitability Analysis
- Revenue trends
- Cost management
- Profit margins
3. Growth Analysis
- Year-over-year growth rates
- Market position
- Future growth potential
4. Risk Assessment
- Operating risks
- Financial risks
- Strategic risks
5. Recommendations
- Short-term actions
- Medium-term strategy
- Long-term planning
6. Future Outlook
- Market conditions
- Company positioning
- Growth opportunities</human>"""
# Generate AI analysis
inputs = self.tiny_tokenizer(prompt, return_tensors="pt", truncation=True)
outputs = self.tiny_model.generate(
inputs["input_ids"],
max_length=2048,
temperature=0.7,
top_p=0.95,
do_sample=True
)
analysis = self.tiny_tokenizer.decode(outputs[0], skip_special_tokens=True)
# Generate sentiment
sentiment = self.analyze_sentiment(structured_balance + structured_income)
# Compile results
results = {
"Financial Analysis": analysis,
"Sentiment Analysis": sentiment,
"Analysis Period": "2021-2025",
"Note": "All values in millions ($M)"
}
return json.dumps(results, indent=2)
except Exception as e:
return f"Error in analysis: {str(e)}\n\nDetails: {type(e).__name__}"
def analyze_sentiment(self, text):
inputs = self.finbert_tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
outputs = self.finbert_model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
sentiment_labels = ['negative', 'neutral', 'positive']
return {
'sentiment': sentiment_labels[probs.argmax().item()],
'confidence': f"{probs.max().item():.2f}"
}
def create_interface():
analyzer = FinancialAnalyzer()
iface = gr.Interface(
fn=analyzer.analyze_financials,
inputs=[
gr.File(label="Balance Sheet (Markdown)", type="filepath"),
gr.File(label="Income Statement (Markdown)", type="filepath")
],
outputs=gr.Textbox(label="Analysis Results", lines=25),
title="Financial Statement Analyzer",
description="Upload financial statements in Markdown format for comprehensive AI-powered analysis."
)
return iface
if __name__ == "__main__":
iface = create_interface()
iface.launch()