walaa2022's picture
Update app.py
74f7ba2 verified
raw
history blame
9.24 kB
import gradio as gr
import pandas as pd
import numpy as np
import json
import chromadb
from chromadb.config import Settings
from datetime import datetime
class FastFinancialAnalyzer:
def __init__(self):
# Initialize ChromaDB
self.client = chromadb.Client(Settings(anonymized_telemetry=False))
# Create financial metrics collection
self.collection = self.client.create_collection(
name="financial_metrics_" + datetime.now().strftime("%Y%m%d_%H%M%S")
)
# Initialize ratio benchmarks
self.initialize_ratio_benchmarks()
def initialize_ratio_benchmarks(self):
"""Initialize benchmark ratios for comparison"""
self.benchmarks = {
"liquidity_ratios": {
"current_ratio": {"good": 2.0, "warning": 1.0},
"quick_ratio": {"good": 1.0, "warning": 0.5}
},
"profitability_ratios": {
"gross_margin": {"good": 0.4, "warning": 0.2},
"net_margin": {"good": 0.1, "warning": 0.05}
},
"efficiency_ratios": {
"inventory_turnover": {"good": 4, "warning": 2},
"asset_turnover": {"good": 0.5, "warning": 0.25}
}
}
def calculate_ratios(self, balance_sheet_df, income_stmt_df):
"""Calculate key financial ratios"""
try:
ratios = {}
# Clean numeric data
for df in [balance_sheet_df, income_stmt_df]:
for col in df.select_dtypes(include=['object']).columns:
df[col] = pd.to_numeric(df[col].astype(str).str.replace(r'[^\d.-]', ''), errors='coerce')
# Calculate ratios for each year
years = [col for col in balance_sheet_df.columns if str(col).isdigit()]
for year in years:
ratios[year] = {
"liquidity": {
"current_ratio": balance_sheet_df.loc[balance_sheet_df['Account'] == 'Total_Current_Assets', year].values[0] /
balance_sheet_df.loc[balance_sheet_df['Account'] == 'Total_Current_Liabilities', year].values[0],
"quick_ratio": (balance_sheet_df.loc[balance_sheet_df['Account'] == 'Total_Current_Assets', year].values[0] -
balance_sheet_df.loc[balance_sheet_df['Account'] == 'Inventory', year].values[0]) /
balance_sheet_df.loc[balance_sheet_df['Account'] == 'Total_Current_Liabilities', year].values[0]
},
"profitability": {
"gross_margin": income_stmt_df.loc[income_stmt_df['Revenue Items'] == 'Gross Profit', year].values[0] /
income_stmt_df.loc[income_stmt_df['Revenue Items'] == 'Total Net Revenue', year].values[0],
"net_margin": income_stmt_df.loc[income_stmt_df['Revenue Items'] == 'Net Earnings', year].values[0] /
income_stmt_df.loc[income_stmt_df['Revenue Items'] == 'Total Net Revenue', year].values[0]
},
"growth": {
"revenue_growth": None if year == years[0] else
(income_stmt_df.loc[income_stmt_df['Revenue Items'] == 'Total Net Revenue', year].values[0] -
income_stmt_df.loc[income_stmt_df['Revenue Items'] == 'Total Net Revenue', str(int(year)-1)].values[0]) /
income_stmt_df.loc[income_stmt_df['Revenue Items'] == 'Total Net Revenue', str(int(year)-1)].values[0] * 100
}
}
return ratios
except Exception as e:
return f"Error calculating ratios: {str(e)}"
def analyze_trends(self, ratios):
"""Analyze financial trends"""
trends = {
"liquidity": self.analyze_ratio_trend("current_ratio", ratios),
"profitability": self.analyze_ratio_trend("net_margin", ratios),
"growth": self.analyze_revenue_growth(ratios)
}
return trends
def analyze_ratio_trend(self, ratio_name, ratios):
"""Analyze trend for a specific ratio"""
values = []
years = sorted(ratios.keys())
for year in years:
if ratio_name in ratios[year].get("liquidity", {}):
values.append(ratios[year]["liquidity"][ratio_name])
elif ratio_name in ratios[year].get("profitability", {}):
values.append(ratios[year]["profitability"][ratio_name])
if not values:
return "No data available"
trend = np.polyfit(range(len(values)), values, 1)[0]
if trend > 0.05:
return "Strong upward trend"
elif trend > 0:
return "Slight upward trend"
elif trend > -0.05:
return "Stable"
else:
return "Downward trend"
def analyze_revenue_growth(self, ratios):
"""Analyze revenue growth trend"""
growth_rates = []
years = sorted(ratios.keys())[1:] # Skip first year as it won't have growth rate
for year in years:
if ratios[year]["growth"]["revenue_growth"] is not None:
growth_rates.append(ratios[year]["growth"]["revenue_growth"])
if not growth_rates:
return "No growth data available"
avg_growth = np.mean(growth_rates)
if avg_growth > 10:
return f"Strong growth (avg {avg_growth:.1f}%)"
elif avg_growth > 0:
return f"Moderate growth (avg {avg_growth:.1f}%)"
else:
return f"Declining growth (avg {avg_growth:.1f}%)"
def generate_insights(self, ratios, trends):
"""Generate actionable insights"""
insights = []
# Liquidity insights
current_ratio = ratios[max(ratios.keys())]["liquidity"]["current_ratio"]
if current_ratio < self.benchmarks["liquidity_ratios"]["current_ratio"]["warning"]:
insights.append("ALERT: Liquidity needs immediate attention")
elif current_ratio < self.benchmarks["liquidity_ratios"]["current_ratio"]["good"]:
insights.append("WATCH: Liquidity is below ideal levels")
# Profitability insights
net_margin = ratios[max(ratios.keys())]["profitability"]["net_margin"]
if net_margin > self.benchmarks["profitability_ratios"]["net_margin"]["good"]:
insights.append("STRONG: Excellent profit margins")
elif net_margin < self.benchmarks["profitability_ratios"]["net_margin"]["warning"]:
insights.append("ALERT: Profit margins need improvement")
# Growth insights
if "growth" in trends:
if "Strong" in trends["growth"]:
insights.append("POSITIVE: Strong revenue growth trend")
elif "Declining" in trends["growth"]:
insights.append("WATCH: Revenue growth is slowing")
return insights
def analyze_financials(self, balance_sheet_file, income_stmt_file):
"""Main analysis function"""
try:
# Read files
balance_sheet_df = pd.read_csv(balance_sheet_file)
income_stmt_df = pd.read_csv(income_stmt_file)
# Calculate ratios
ratios = self.calculate_ratios(balance_sheet_df, income_stmt_df)
# Analyze trends
trends = self.analyze_trends(ratios)
# Generate insights
insights = self.generate_insights(ratios, trends)
# Prepare comprehensive analysis
analysis = {
"Financial Ratios": ratios,
"Trend Analysis": trends,
"Key Insights": insights,
"Summary": {
"Latest Year Analysis": {
"Current Ratio": f"{ratios[max(ratios.keys())]['liquidity']['current_ratio']:.2f}",
"Net Margin": f"{ratios[max(ratios.keys())]['profitability']['net_margin']:.2%}",
"Revenue Growth": f"{ratios[max(ratios.keys())]['growth']['revenue_growth']:.2f}%" if ratios[max(ratios.keys())]['growth']['revenue_growth'] else "N/A"
}
}
}
return json.dumps(analysis, indent=2)
except Exception as e:
return f"Error in analysis: {str(e)}"
def create_interface():
analyzer = FastFinancialAnalyzer()
iface = gr.Interface(
fn=analyzer.analyze_financials,
inputs=[
gr.File(label="Balance Sheet (CSV)", type="filepath"),
gr.File(label="Income Statement (CSV)", type="filepath")
],
outputs=gr.Textbox(label="Analysis Results", lines=20),
title="Fast Financial Statement Analyzer",
description="Upload financial statements for instant analysis with ratio calculations and trend detection."
)
return iface
if __name__ == "__main__":
iface = create_interface()
iface.launch()