File size: 12,386 Bytes
b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 f2a6f7e b458509 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
# app.py - Main Gradio application
import gradio as gr
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText
from PIL import Image
import os
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Model configuration
MODEL_ID = "google/medgemma-4b-it"
# Global variables for model and processor
model = None
processor = None
def load_model():
"""Load model and processor with error handling"""
global model, processor
try:
logger.info(f"Loading model: {MODEL_ID}")
# Check if CUDA is available
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
# Load model with appropriate settings for Spaces
model = AutoModelForImageTextToText.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32,
device_map="auto" if device == "cuda" else None,
trust_remote_code=True,
low_cpu_mem_usage=True
)
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
logger.info("Model loaded successfully!")
return True
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
return False
# Initialize model at startup
model_loaded = load_model()
def analyze_medical_image(image, clinical_question, patient_history=""):
"""
Analyze medical image with clinical context
"""
global model, processor
# Check if model is loaded
if not model_loaded or model is None or processor is None:
return "β Model not loaded. Please try refreshing the page or contact support."
if image is None:
return "β οΈ Please upload a medical image first."
if not clinical_question.strip():
return "β οΈ Please provide a clinical question."
try:
# Prepare the conversation with proper medical context
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "You are MedGemma, an expert medical AI assistant specialized in medical image analysis. Provide detailed, structured analysis while emphasizing that this is for educational purposes only and should not replace professional medical diagnosis. Be thorough but clear in your explanations."}]
}
]
# Build user message content
user_content = []
# Add patient history if provided
if patient_history.strip():
user_content.append({"type": "text", "text": f"Patient History: {patient_history}\n\n"})
# Add the clinical question
user_content.append({"type": "text", "text": f"Clinical Question: {clinical_question}"})
# Add the image
user_content.append({"type": "image", "image": image})
messages.append({
"role": "user",
"content": user_content
})
# Process inputs
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
)
# Move to appropriate device
device = next(model.parameters()).device
dtype = next(model.parameters()).dtype
inputs = {k: v.to(device) for k, v in inputs.items()}
input_len = inputs["input_ids"].shape[-1]
# Generate response with appropriate settings
with torch.inference_mode():
generation = model.generate(
**inputs,
max_new_tokens=1500,
do_sample=True,
temperature=0.3, # Lower temperature for more focused medical analysis
top_p=0.95,
repetition_penalty=1.1,
pad_token_id=processor.tokenizer.eos_token_id
)
generation = generation[0][input_len:]
# Decode response
response = processor.decode(generation, skip_special_tokens=True)
# Clean up response
response = response.strip()
# Add structured disclaimer
disclaimer = """
---
### β οΈ MEDICAL DISCLAIMER
**This analysis is for educational and research purposes only.**
- This AI assistant is not a substitute for professional medical advice
- Always consult qualified healthcare professionals for diagnosis and treatment
- Do not make medical decisions based solely on this analysis
- In case of medical emergency, contact emergency services immediately
---
"""
return response + disclaimer
except Exception as e:
logger.error(f"Error in analyze_medical_image: {str(e)}")
return f"β Error processing request: {str(e)}\n\nPlease try again or contact support if the issue persists."
# Create Gradio interface
def create_interface():
with gr.Blocks(
title="MedGemma Medical Image Analysis",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.disclaimer {
background-color: #fef2f2;
border: 1px solid #fecaca;
border-radius: 8px;
padding: 16px;
margin: 16px 0;
}
"""
) as demo:
# Header
gr.Markdown("""
# π₯ MedGemma Medical Image Analysis
**Advanced Medical AI Assistant powered by Google's MedGemma-4B**
This tool can analyze various medical imaging modalities including:
- π« **Chest X-rays** - Pneumonia, COVID-19, lung pathology
- π§ **CT Scans** - Brain, chest, abdomen imaging
- π¬ **Histopathology** - Microscopic tissue analysis
- ποΈ **Ophthalmology** - Retinal imaging, eye conditions
- π©Ί **Dermatology** - Skin lesions and conditions
""")
# Warning banner
with gr.Row():
gr.Markdown("""
<div class="disclaimer">
β οΈ <strong>IMPORTANT MEDICAL DISCLAIMER</strong><br>
This tool is for <strong>educational and research purposes only</strong>.
Do not upload real patient data or use for actual medical diagnosis.
Always consult qualified healthcare professionals.
</div>
""")
with gr.Row():
# Left column - Inputs
with gr.Column(scale=1):
gr.Markdown("## π€ Upload & Configure")
image_input = gr.Image(
label="Medical Image",
type="pil",
height=350,
sources=["upload", "clipboard"]
)
clinical_question = gr.Textbox(
label="Clinical Question *",
placeholder="Examples:\nβ’ Describe the findings in this chest X-ray\nβ’ What pathological changes are visible?\nβ’ Provide differential diagnosis based on imaging\nβ’ Identify any abnormalities present",
lines=4,
max_lines=6
)
patient_history = gr.Textbox(
label="Patient History (Optional)",
placeholder="Example: 65-year-old male presenting with chronic cough, shortness of breath, and chest pain. History of smoking for 30 years.",
lines=3,
max_lines=5
)
with gr.Row():
clear_btn = gr.Button("ποΈ Clear All", variant="secondary")
analyze_btn = gr.Button("π Analyze Image", variant="primary", size="lg")
# Model status
gr.Markdown(f"""
**Model Status:** {'β
Loaded' if model_loaded else 'β Not Loaded'}
**Model:** {MODEL_ID}
**Device:** {'CUDA' if torch.cuda.is_available() else 'CPU'}
""")
# Right column - Output
with gr.Column(scale=1):
gr.Markdown("## π Medical Analysis Results")
output = gr.Textbox(
label="AI Medical Analysis",
lines=25,
max_lines=35,
show_copy_button=True,
placeholder="Upload an image and ask a clinical question to get started..."
)
# Example cases section
gr.Markdown("## π‘ Example Use Cases")
with gr.Accordion("Click to see example cases", open=False):
examples = gr.Examples(
examples=[
[
"https://upload.wikimedia.org/wikipedia/commons/c/c8/Chest_Xray_PA_3-8-2010.png",
"Analyze this chest X-ray and describe any abnormal findings. Comment on the heart size, lung fields, and overall chest anatomy.",
"Adult patient presenting with respiratory symptoms including cough and shortness of breath."
],
[
None,
"What pathological changes are visible in this medical image? Provide a structured analysis including anatomical observations and potential diagnoses.",
"Patient with acute onset symptoms"
],
[
None,
"Perform a systematic review of this imaging study. Include: 1) Technical quality assessment, 2) Normal anatomical structures, 3) Abnormal findings, 4) Clinical significance.",
""
],
[
None,
"Compare the findings in this image to normal anatomy. What are the key differences and what might they suggest clinically?",
"Follow-up imaging for known condition"
]
],
inputs=[image_input, clinical_question, patient_history],
label="Click any example to load it"
)
# Event handlers
analyze_btn.click(
fn=analyze_medical_image,
inputs=[image_input, clinical_question, patient_history],
outputs=output,
show_progress=True
)
def clear_all():
return None, "", "", ""
clear_btn.click(
fn=clear_all,
outputs=[image_input, clinical_question, patient_history, output]
)
# Footer information
gr.Markdown("""
---
### π About MedGemma
MedGemma is Google's specialized medical AI model trained on medical imaging and clinical text.
It excels at:
- Multi-modal medical image analysis
- Clinical reasoning and differential diagnosis
- Structured medical reporting
- Educational medical content generation
**Supported Image Types:** JPEG, PNG, TIFF, DICOM (converted)
**Max Image Size:** 10MB
**Optimal Resolution:** 896x896 pixels (auto-resized)
### π Privacy & Data Policy
- **No data storage**: Images and text are processed in real-time and not saved
- **No patient data**: Use only synthetic, anonymized, or educational images
- **Educational use**: This tool is designed for learning and research purposes
### π Support
For technical issues or questions, please create an issue in the [Hugging Face Space repository](https://huggingface.co/spaces).
**Model**: Google MedGemma-4B | **Framework**: Transformers + Gradio | **License**: Apache 2.0
""")
return demo
# Launch the app
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
) |