File size: 22,043 Bytes
0c3e999
b458509
 
d91b6af
 
 
0c3e999
d91b6af
 
 
 
 
0c3e999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d91b6af
 
2ebe272
d91b6af
 
 
 
 
 
2ebe272
d91b6af
 
 
 
 
 
 
2ebe272
d91b6af
 
2ebe272
d91b6af
 
 
 
 
0c3e999
d91b6af
 
b458509
d91b6af
 
 
 
 
 
 
 
 
 
 
 
 
0c3e999
d91b6af
 
 
 
 
 
0c3e999
 
d91b6af
b458509
d91b6af
 
 
0c3e999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d91b6af
0c3e999
 
 
 
 
 
 
 
 
 
 
 
d91b6af
 
 
0c3e999
d91b6af
2ebe272
d91b6af
0c3e999
2ebe272
d91b6af
0c3e999
d91b6af
2ebe272
d91b6af
 
 
 
2ebe272
d91b6af
 
0c3e999
 
 
 
 
 
 
 
 
 
 
 
 
 
2ebe272
d91b6af
 
 
 
 
 
 
 
 
0c3e999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d91b6af
0c3e999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d91b6af
0c3e999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d91b6af
 
0c3e999
d91b6af
0c3e999
 
d91b6af
 
 
 
 
 
0c3e999
d91b6af
 
 
 
 
0c3e999
 
 
d91b6af
 
0c3e999
 
 
 
d91b6af
 
0c3e999
d91b6af
 
0c3e999
d91b6af
0c3e999
d91b6af
0c3e999
 
 
 
 
d91b6af
 
0c3e999
 
d91b6af
 
 
 
 
 
 
 
 
 
 
 
 
 
0c3e999
 
 
 
 
 
 
 
 
 
 
d91b6af
 
 
 
0c3e999
d91b6af
0c3e999
d91b6af
0c3e999
d91b6af
 
 
 
 
0c3e999
d91b6af
 
 
2ebe272
d91b6af
 
0c3e999
 
 
 
 
 
 
 
 
 
 
d91b6af
 
0c3e999
d91b6af
 
0c3e999
d91b6af
 
0c3e999
d91b6af
 
 
 
 
 
 
 
 
 
 
 
0c3e999
d91b6af
 
 
 
 
 
 
0c3e999
d91b6af
 
 
 
 
0c3e999
 
d91b6af
 
 
 
 
 
0c3e999
 
 
d91b6af
 
 
 
0c3e999
d91b6af
 
 
0c3e999
d91b6af
 
 
0c3e999
d91b6af
 
 
 
 
 
0c3e999
 
d91b6af
 
 
0c3e999
 
 
d91b6af
 
 
0c3e999
d91b6af
 
0c3e999
d91b6af
0c3e999
 
d91b6af
0c3e999
d91b6af
644aa62
0c3e999
d91b6af
 
 
0c3e999
d91b6af
 
0c3e999
d91b6af
0c3e999
 
 
d91b6af
 
0c3e999
d91b6af
0c3e999
d91b6af
 
0c3e999
 
 
 
 
 
d91b6af
0c3e999
d91b6af
 
 
 
0c3e999
 
d91b6af
 
0c3e999
d91b6af
 
 
 
 
 
 
 
 
 
 
0c3e999
d91b6af
 
 
 
 
 
 
 
0c3e999
d91b6af
0c3e999
 
d91b6af
 
 
0c3e999
 
d91b6af
 
 
0c3e999
 
d91b6af
 
b458509
0c3e999
d91b6af
 
0c3e999
d91b6af
0c3e999
d91b6af
0c3e999
 
 
 
 
d91b6af
0c3e999
d91b6af
b458509
d91b6af
b458509
d91b6af
b458509
d91b6af
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
# app.py - Fixed LLaVA Medical AI with NoneType Error Resolution
import gradio as gr
import torch
import logging
from collections import defaultdict, Counter
import time
import traceback

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Fix the NoneType compatibility issue
def fix_transformers_compatibility():
    """Fix compatibility issues with transformers library"""
    try:
        # Import and fix the parallel styles issue
        import transformers.modeling_utils as modeling_utils
        if not hasattr(modeling_utils, 'ALL_PARALLEL_STYLES'):
            modeling_utils.ALL_PARALLEL_STYLES = []
        elif getattr(modeling_utils, 'ALL_PARALLEL_STYLES', None) is None:
            modeling_utils.ALL_PARALLEL_STYLES = []
        
        # Fix in specific model files
        try:
            import transformers.models.llava_next.modeling_llava_next as llava_next
            if not hasattr(llava_next, 'ALL_PARALLEL_STYLES'):
                llava_next.ALL_PARALLEL_STYLES = []
            elif getattr(llava_next, 'ALL_PARALLEL_STYLES', None) is None:
                llava_next.ALL_PARALLEL_STYLES = []
        except ImportError:
            pass
            
        # Fix in mistral files if they exist
        try:
            import transformers.models.mistral.modeling_mistral as mistral
            if not hasattr(mistral, 'ALL_PARALLEL_STYLES'):
                mistral.ALL_PARALLEL_STYLES = []
            elif getattr(mistral, 'ALL_PARALLEL_STYLES', None) is None:
                mistral.ALL_PARALLEL_STYLES = []
        except ImportError:
            pass
            
        logger.info("βœ… Applied compatibility fixes")
        return True
    except Exception as e:
        logger.warning(f"⚠️ Could not apply compatibility fixes: {e}")
        return False

# Apply compatibility fix before imports
fix_transformers_compatibility()

# Now import transformers
try:
    from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
    from PIL import Image
    logger.info("βœ… Transformers imported successfully")
except Exception as e:
    logger.error(f"❌ Failed to import transformers: {e}")
    # Fallback imports
    try:
        from transformers import LlavaProcessor, LlavaForConditionalGeneration as LlavaNextForConditionalGeneration
        from transformers import AutoProcessor as LlavaNextProcessor
        logger.info("βœ… Using fallback LLaVA imports")
    except Exception as e2:
        logger.error(f"❌ Fallback imports also failed: {e2}")

# Usage tracking
class UsageTracker:
    def __init__(self):
        self.stats = {
            'total_analyses': 0,
            'successful_analyses': 0,
            'failed_analyses': 0,
            'average_processing_time': 0.0,
            'question_types': Counter()
        }
    
    def log_analysis(self, success, duration, question_type=None):
        self.stats['total_analyses'] += 1
        if success:
            self.stats['successful_analyses'] += 1
        else:
            self.stats['failed_analyses'] += 1
        
        total_time = self.stats['average_processing_time'] * (self.stats['total_analyses'] - 1)
        self.stats['average_processing_time'] = (total_time + duration) / self.stats['total_analyses']
        
        if question_type:
            self.stats['question_types'][question_type] += 1

# Rate limiting
class RateLimiter:
    def __init__(self, max_requests_per_hour=20):
        self.max_requests_per_hour = max_requests_per_hour
        self.requests = defaultdict(list)
    
    def is_allowed(self, user_id="default"):
        current_time = time.time()
        hour_ago = current_time - 3600
        self.requests[user_id] = [req_time for req_time in self.requests[user_id] if req_time > hour_ago]
        if len(self.requests[user_id]) < self.max_requests_per_hour:
            self.requests[user_id].append(current_time)
            return True
        return False

# Initialize components
usage_tracker = UsageTracker()
rate_limiter = RateLimiter()

# Model configuration
MODEL_ID = "llava-hf/llava-v1.6-mistral-7b-hf"

# Global variables
model = None
processor = None

def load_llava_safe():
    """Load LLaVA model with comprehensive error handling"""
    global model, processor
    
    try:
        logger.info(f"Loading LLaVA model: {MODEL_ID}")
        
        # Try different loading approaches
        loading_methods = [
            ("Standard LlavaNext", lambda: (
                LlavaNextProcessor.from_pretrained(MODEL_ID),
                LlavaNextForConditionalGeneration.from_pretrained(
                    MODEL_ID, 
                    torch_dtype=torch.float32,  # Use float32 for stability
                    device_map=None,  # Let PyTorch handle device placement
                    low_cpu_mem_usage=True,
                    attn_implementation="eager"  # Use eager attention to avoid issues
                )
            )),
            ("Auto Processor Fallback", lambda: (
                LlavaNextProcessor.from_pretrained(MODEL_ID),
                LlavaNextForConditionalGeneration.from_pretrained(
                    MODEL_ID, 
                    torch_dtype=torch.float32,
                    trust_remote_code=True,
                    use_safetensors=True
                )
            )),
        ]
        
        for method_name, method_func in loading_methods:
            try:
                logger.info(f"Trying {method_name}...")
                processor, model = method_func()
                logger.info(f"βœ… LLaVA loaded successfully using {method_name}!")
                return True
            except Exception as e:
                logger.warning(f"❌ {method_name} failed: {str(e)}")
                continue
        
        logger.error("❌ All loading methods failed")
        return False
        
    except Exception as e:
        logger.error(f"❌ Error loading LLaVA: {str(e)}")
        logger.error(f"Full traceback: {traceback.format_exc()}")
        return False

# Load model at startup
llava_ready = load_llava_safe()

def analyze_medical_image_llava(image, clinical_question, patient_history=""):
    """Analyze medical image using LLaVA with robust error handling"""
    start_time = time.time()
    
    # Rate limiting
    if not rate_limiter.is_allowed():
        usage_tracker.log_analysis(False, time.time() - start_time)
        return "⚠️ Rate limit exceeded. Please wait before trying again."
    
    if not llava_ready or model is None:
        usage_tracker.log_analysis(False, time.time() - start_time)
        return """❌ **LLaVA Model Loading Issue**

The LLaVA model failed to load due to compatibility issues. This is often caused by:

1. **Library Version Conflicts**: Try refreshing the page - we've applied compatibility fixes
2. **Memory Constraints**: The 7B model requires significant resources  
3. **Transformers Version**: Some versions have compatibility issues

**Suggested Solutions:**
- **Refresh the page** and wait 2-3 minutes for model loading
- **Upgrade to GPU hardware** for better performance and stability
- **Try a different image** if the issue persists

**Technical Info**: There may be version conflicts in the transformers library. The model files downloaded successfully but initialization failed."""
    
    if image is None:
        return "⚠️ Please upload a medical image first."
    
    if not clinical_question.strip():
        return "⚠️ Please provide a clinical question."
    
    try:
        logger.info("Starting LLaVA medical analysis...")
        
        # Prepare medical prompt
        medical_prompt = f"""You are an expert medical AI assistant analyzing medical images. Please provide a comprehensive medical analysis.

{f"Patient History: {patient_history}" if patient_history.strip() else ""}

Clinical Question: {clinical_question}

Please analyze this medical image systematically:

1. **Image Quality**: Assess technical quality and diagnostic adequacy
2. **Anatomical Structures**: Identify visible normal structures  
3. **Abnormal Findings**: Describe any pathological changes
4. **Clinical Significance**: Explain the importance of findings
5. **Assessment**: Provide clinical interpretation
6. **Recommendations**: Suggest next steps if appropriate

Provide detailed, educational medical analysis suitable for learning purposes."""
        
        # Different prompt formats to try
        prompt_formats = [
            # Format 1: Simple user message
            lambda: f"USER: <image>\n{medical_prompt}\nASSISTANT:",
            
            # Format 2: Chat format
            lambda: processor.apply_chat_template([
                {"role": "user", "content": [
                    {"type": "image", "image": image},
                    {"type": "text", "text": medical_prompt}
                ]}
            ], add_generation_prompt=True),
            
            # Format 3: Direct format
            lambda: medical_prompt
        ]
        
        # Try different prompt formats
        for i, prompt_func in enumerate(prompt_formats):
            try:
                logger.info(f"Trying prompt format {i+1}...")
                
                if i == 1:  # Chat template format
                    try:
                        prompt = prompt_func()
                    except:
                        continue
                else:
                    prompt = prompt_func()
                
                # Process inputs
                inputs = processor(prompt, image, return_tensors='pt')
                
                # Generate response with conservative settings
                logger.info("Generating medical analysis...")
                with torch.inference_mode():
                    output = model.generate(
                        **inputs,
                        max_new_tokens=1000,  # Conservative limit
                        do_sample=True,
                        temperature=0.3,
                        top_p=0.9,
                        repetition_penalty=1.1,
                        use_cache=False  # Disable cache for stability
                    )
                
                # Decode response
                generated_text = processor.decode(output[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
                
                if generated_text and generated_text.strip():
                    break
                    
            except Exception as e:
                logger.warning(f"Prompt format {i+1} failed: {e}")
                if i == len(prompt_formats) - 1:  # Last attempt
                    raise e
                continue
        
        # Clean up response
        response = generated_text.strip() if generated_text else "Analysis completed."
        
        # Format the response
        formatted_response = f"""# πŸ₯ **LLaVA Medical Analysis**

## **Clinical Question:** {clinical_question}
{f"## **Patient History:** {patient_history}" if patient_history.strip() else ""}

---

## πŸ” **Medical Analysis Results**

{response}

---

## πŸ“‹ **Clinical Summary**

This analysis was generated using LLaVA (Large Language and Vision Assistant) for educational purposes. The findings should be interpreted by qualified medical professionals and correlated with clinical presentation.

**Key Points:**
- Analysis based on visual medical image interpretation
- Systematic approach to medical imaging assessment  
- Educational tool for medical learning and training
- Requires professional medical validation
"""
        
        # Add medical disclaimer
        disclaimer = """
---
## ⚠️ **MEDICAL DISCLAIMER**

**FOR EDUCATIONAL PURPOSES ONLY**

- **Not Diagnostic**: This AI analysis is not a medical diagnosis
- **Professional Review**: All findings require validation by healthcare professionals  
- **Emergency Care**: Contact emergency services for urgent medical concerns
- **Educational Tool**: Designed for medical education and training
- **No PHI**: Do not upload patient identifiable information

---
**Powered by**: LLaVA (Large Language and Vision Assistant)
"""
        
        # Log successful analysis
        duration = time.time() - start_time
        question_type = classify_question(clinical_question)
        usage_tracker.log_analysis(True, duration, question_type)
        
        logger.info("βœ… LLaVA medical analysis completed successfully")
        return formatted_response + disclaimer
        
    except Exception as e:
        duration = time.time() - start_time
        usage_tracker.log_analysis(False, duration)
        logger.error(f"❌ LLaVA analysis error: {str(e)}")
        
        return f"""❌ **Analysis Error**

The analysis failed with error: {str(e)}

**Common Solutions:**
- **Try again**: Sometimes temporary processing issues occur
- **Smaller image**: Try with a smaller or different format image  
- **Simpler question**: Use a more straightforward clinical question
- **Refresh page**: Reload the page if model seems unstable

**Technical Details:** {str(e)[:200]}"""

def classify_question(question):
    """Classify clinical question type"""
    question_lower = question.lower()
    if any(word in question_lower for word in ['describe', 'findings', 'observe']):
        return 'descriptive'
    elif any(word in question_lower for word in ['diagnosis', 'differential', 'condition']):
        return 'diagnostic'
    elif any(word in question_lower for word in ['abnormal', 'pathology', 'disease']):
        return 'pathological'
    else:
        return 'general'

def get_usage_stats():
    """Get usage statistics"""
    stats = usage_tracker.stats
    if stats['total_analyses'] == 0:
        return "πŸ“Š **Usage Statistics**\n\nNo analyses performed yet."
    
    success_rate = (stats['successful_analyses'] / stats['total_analyses']) * 100
    
    return f"""πŸ“Š **LLaVA Usage Statistics**

**Performance:**
- Total Analyses: {stats['total_analyses']}
- Success Rate: {success_rate:.1f}%
- Avg Processing Time: {stats['average_processing_time']:.2f}s

**Popular Question Types:**
{chr(10).join([f"- {qtype}: {count}" for qtype, count in stats['question_types'].most_common(3)])}

**Model Status**: {'🟒 Ready' if llava_ready else 'πŸ”΄ Loading Issues'}
"""

# Create Gradio interface
def create_interface():
    with gr.Blocks(
        title="LLaVA Medical Analysis", 
        theme=gr.themes.Soft(),
        css="""
        .gradio-container { max-width: 1200px !important; }
        .disclaimer { background-color: #fef2f2; border: 1px solid #fecaca; border-radius: 8px; padding: 16px; margin: 16px 0; }
        .success { background-color: #f0f9ff; border: 1px solid #bae6fd; border-radius: 8px; padding: 16px; margin: 16px 0; }
        .warning { background-color: #fffbeb; border: 1px solid #fed7aa; border-radius: 8px; padding: 16px; margin: 16px 0; }
        """
    ) as demo:
        
        # Header
        gr.Markdown("""
        # πŸ₯ LLaVA Medical Image Analysis
        
        **Advanced Medical AI powered by LLaVA (Large Language and Vision Assistant)**
        
        **Medical Capabilities:** 🫁 Radiology β€’ πŸ”¬ Pathology β€’ 🩺 Dermatology β€’ πŸ‘οΈ Ophthalmology
        """)
        
        # Status display
        if llava_ready:
            gr.Markdown("""
            <div class="success">
            βœ… <strong>LLAVA MEDICAL AI READY</strong><br>
            LLaVA model loaded successfully with compatibility fixes. Ready for medical image analysis.
            </div>
            """)
        else:
            gr.Markdown("""
            <div class="warning">
            ⚠️ <strong>MODEL LOADING ISSUE</strong><br>
            LLaVA model had loading problems. Try refreshing the page or contact support for assistance.
            </div>
            """)
        
        # Medical disclaimer
        gr.Markdown("""
        <div class="disclaimer">
        ⚠️ <strong>MEDICAL DISCLAIMER</strong><br>
        This AI provides medical analysis for <strong>educational purposes only</strong>. 
        Do not upload real patient data. Always consult healthcare professionals for medical decisions.
        </div>
        """)
        
        with gr.Row():
            # Left column
            with gr.Column(scale=2):
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("## πŸ“€ Medical Image")
                        image_input = gr.Image(
                            label="Upload Medical Image", 
                            type="pil",
                            height=300
                        )
                        
                    with gr.Column():
                        gr.Markdown("## πŸ’¬ Clinical Information")
                        clinical_question = gr.Textbox(
                            label="Clinical Question *",
                            placeholder="Examples:\nβ€’ Analyze this medical image\nβ€’ What abnormalities are visible?\nβ€’ Describe the findings\nβ€’ Provide medical interpretation",
                            lines=4
                        )
                        
                        patient_history = gr.Textbox(
                            label="Patient History (Optional)",
                            placeholder="e.g., 45-year-old with chest pain",
                            lines=2
                        )
                
                with gr.Row():
                    clear_btn = gr.Button("πŸ—‘οΈ Clear", variant="secondary")
                    analyze_btn = gr.Button("πŸ” Analyze with LLaVA", variant="primary", size="lg")
                
                gr.Markdown("## πŸ“‹ Medical Analysis Results")
                output = gr.Textbox(
                    label="LLaVA Medical Analysis",
                    lines=20,
                    show_copy_button=True,
                    placeholder="Upload a medical image and clinical question..." if llava_ready else "Model loading issues - please refresh the page"
                )
            
            # Right column
            with gr.Column(scale=1):
                gr.Markdown("## ℹ️ System Status")
                
                status = "βœ… Ready" if llava_ready else "⚠️ Loading Issues"
                
                gr.Markdown(f"""
                **Model Status:** {status}  
                **AI Model:** LLaVA-v1.6-Mistral-7B  
                **Device:** {'GPU' if torch.cuda.is_available() else 'CPU'}  
                **Compatibility:** Fixed for stability  
                **Rate Limit:** 20 requests/hour
                """)
                
                gr.Markdown("## πŸ“Š Usage Statistics")
                stats_display = gr.Markdown("")
                refresh_stats_btn = gr.Button("πŸ”„ Refresh Stats", size="sm")
                
                if llava_ready:
                    gr.Markdown("## 🎯 Quick Examples")
                    general_btn = gr.Button("General Analysis", size="sm")
                    findings_btn = gr.Button("Find Abnormalities", size="sm")
                    interpret_btn = gr.Button("Medical Interpretation", size="sm")
        
        # Example cases
        if llava_ready:
            with gr.Accordion("πŸ“š Example Cases", open=False):
                examples = gr.Examples(
                    examples=[
                        [
                            "https://upload.wikimedia.org/wikipedia/commons/c/c8/Chest_Xray_PA_3-8-2010.png",
                            "Please analyze this chest X-ray and describe any findings. Assess the image quality, identify normal structures, and note any abnormalities.",
                            "Adult patient with respiratory symptoms"
                        ]
                    ],
                    inputs=[image_input, clinical_question, patient_history]
                )
        
        # Event handlers
        analyze_btn.click(
            fn=analyze_medical_image_llava,
            inputs=[image_input, clinical_question, patient_history],
            outputs=output,
            show_progress=True
        )
        
        clear_btn.click(
            fn=lambda: (None, "", "", ""),
            outputs=[image_input, clinical_question, patient_history, output]
        )
        
        refresh_stats_btn.click(
            fn=get_usage_stats,
            outputs=stats_display
        )
        
        # Quick example handlers
        if llava_ready:
            general_btn.click(
                fn=lambda: ("Analyze this medical image comprehensively. Describe what you observe and provide medical interpretation.", ""),
                outputs=[clinical_question, patient_history]
            )
            
            findings_btn.click(
                fn=lambda: ("What abnormalities or pathological findings are visible in this medical image?", ""),
                outputs=[clinical_question, patient_history]
            )
            
            interpret_btn.click(
                fn=lambda: ("Provide medical interpretation of this image including clinical significance of any findings.", ""),
                outputs=[clinical_question, patient_history]
            )
        
        # Footer
        gr.Markdown("""
        ---
        ### πŸ€– LLaVA Medical AI
        
        **Large Language and Vision Assistant** optimized for medical image analysis with compatibility fixes for stable operation.
        
        **Features:**
        - Advanced medical image interpretation
        - Systematic clinical analysis approach  
        - Educational medical explanations
        - Comprehensive error handling
        
        **Model:** LLaVA-v1.6-Mistral-7B | **Purpose:** Medical Education & Research
        """)
    
    return demo

# Launch the application
if __name__ == "__main__":
    demo = create_interface()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )