File size: 11,676 Bytes
b458509 644aa62 2ebe272 644aa62 f2a6f7e ad07a2e 644aa62 b458509 644aa62 2ebe272 644aa62 2ebe272 ad07a2e 644aa62 ad07a2e 2ebe272 644aa62 2ebe272 644aa62 2ebe272 644aa62 2ebe272 644aa62 b458509 644aa62 b458509 644aa62 2ebe272 644aa62 2ebe272 644aa62 2ebe272 644aa62 2ebe272 644aa62 2ebe272 644aa62 ad07a2e 644aa62 2ebe272 644aa62 2ebe272 644aa62 b458509 644aa62 2ebe272 644aa62 f2a6f7e 644aa62 b458509 644aa62 b458509 644aa62 b458509 644aa62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import gradio as gr
import torch
from transformers import (
AutoModelForCausalLM,
AutoModelForImageTextToText,
AutoTokenizer,
AutoProcessor,
pipeline
)
from PIL import Image
import os
import spaces
# Try to import bitsandbytes for quantization (optional)
try:
from transformers import BitsAndBytesConfig
QUANTIZATION_AVAILABLE = True
except ImportError:
QUANTIZATION_AVAILABLE = False
print("β οΈ bitsandbytes not available. Quantization will be disabled.")
# Configuration
MODEL_4B = "google/medgemma-4b-it"
MODEL_27B = "google/medgemma-27b-text-it"
class MedGemmaApp:
def __init__(self):
self.current_model = None
self.current_tokenizer = None
self.current_processor = None
self.current_pipe = None
self.model_type = None
def get_model_kwargs(self, use_quantization=True):
"""Get model configuration arguments"""
model_kwargs = {
"torch_dtype": torch.bfloat16,
"device_map": "auto",
}
# Only add quantization if available and requested
if use_quantization and QUANTIZATION_AVAILABLE:
model_kwargs["quantization_config"] = BitsAndBytesConfig(load_in_4bit=True)
elif use_quantization and not QUANTIZATION_AVAILABLE:
print("β οΈ Quantization requested but bitsandbytes not available. Loading without quantization.")
return model_kwargs
@spaces.GPU
def load_model(self, model_choice, use_quantization=True):
"""Load the selected model"""
try:
model_id = MODEL_4B if model_choice == "4B (Multimodal)" else MODEL_27B
model_kwargs = self.get_model_kwargs(use_quantization)
# Clear previous model
if self.current_model is not None:
del self.current_model
del self.current_tokenizer
if self.current_processor:
del self.current_processor
if self.current_pipe:
del self.current_pipe
torch.cuda.empty_cache()
if model_choice == "4B (Multimodal)":
# Load multimodal model
self.current_model = AutoModelForImageTextToText.from_pretrained(
model_id, **model_kwargs
)
self.current_processor = AutoProcessor.from_pretrained(model_id)
self.model_type = "multimodal"
# Create pipeline for easier inference
self.current_pipe = pipeline(
"image-text-to-text",
model=self.current_model,
processor=self.current_processor,
)
self.current_pipe.model.generation_config.do_sample = False
else:
# Load text-only model
self.current_model = AutoModelForCausalLM.from_pretrained(
model_id, **model_kwargs
)
self.current_tokenizer = AutoTokenizer.from_pretrained(model_id)
self.model_type = "text"
# Create pipeline for easier inference
self.current_pipe = pipeline(
"text-generation",
model=self.current_model,
tokenizer=self.current_tokenizer,
)
self.current_pipe.model.generation_config.do_sample = False
return f"β
Successfully loaded {model_choice} model!"
except Exception as e:
return f"β Error loading model: {str(e)}"
@spaces.GPU
def chat_text_only(self, message, history, system_instruction="You are a helpful medical assistant."):
"""Handle text-only conversations"""
if self.current_model is None or self.model_type != "text":
return "Please load the 27B (Text Only) model first!"
try:
messages = [
{"role": "system", "content": system_instruction},
{"role": "user", "content": message}
]
# Add conversation history
for human, assistant in history:
messages.insert(-1, {"role": "user", "content": human})
messages.insert(-1, {"role": "assistant", "content": assistant})
output = self.current_pipe(messages, max_new_tokens=500)
response = output[0]["generated_text"][-1]["content"]
return response
except Exception as e:
return f"Error generating response: {str(e)}"
@spaces.GPU
def chat_with_image(self, message, image, system_instruction="You are an expert radiologist."):
"""Handle image + text conversations"""
if self.current_model is None or self.model_type != "multimodal":
return "Please load the 4B (Multimodal) model first!"
if image is None:
return "Please upload an image to analyze."
try:
messages = [
{
"role": "system",
"content": [{"type": "text", "text": system_instruction}]
},
{
"role": "user",
"content": [
{"type": "text", "text": message},
{"type": "image", "image": image}
]
}
]
output = self.current_pipe(text=messages, max_new_tokens=300)
response = output[0]["generated_text"][-1]["content"]
return response
except Exception as e:
return f"Error analyzing image: {str(e)}"
# Initialize the app
app = MedGemmaApp()
# Create Gradio interface
with gr.Blocks(title="MedGemma Medical AI Assistant", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π₯ MedGemma Medical AI Assistant
Welcome to MedGemma, Google's medical AI assistant! Choose between:
- **4B Multimodal**: Analyze medical images (X-rays, scans) with text
- **27B Text-Only**: Advanced medical text conversations
> **Note**: This is for educational and research purposes only. Always consult healthcare professionals for medical advice.
""")
with gr.Row():
with gr.Column(scale=1):
model_choice = gr.Radio(
choices=["4B (Multimodal)", "27B (Text Only)"],
value="4B (Multimodal)",
label="Select Model",
info="4B supports images, 27B is text-only but more powerful"
)
use_quantization = gr.Checkbox(
value=QUANTIZATION_AVAILABLE,
label="Use 4-bit Quantization" + ("" if QUANTIZATION_AVAILABLE else " (Unavailable)"),
info="Reduces memory usage" + ("" if QUANTIZATION_AVAILABLE else " - bitsandbytes not installed"),
interactive=QUANTIZATION_AVAILABLE
)
load_btn = gr.Button("π Load Model", variant="primary")
model_status = gr.Textbox(label="Model Status", interactive=False)
with gr.Tabs():
# Text-only chat tab
with gr.Tab("π¬ Text Chat", id="text_chat"):
gr.Markdown("### Medical Text Consultation")
with gr.Row():
with gr.Column(scale=3):
text_system = gr.Textbox(
value="You are a helpful medical assistant.",
label="System Instruction",
placeholder="Set the AI's role and behavior..."
)
chatbot_text = gr.Chatbot(
height=400,
placeholder="Start a medical conversation...",
label="Medical Assistant"
)
with gr.Row():
text_input = gr.Textbox(
placeholder="Ask a medical question...",
label="Your Question",
scale=4
)
text_submit = gr.Button("Send", scale=1)
with gr.Column(scale=1):
gr.Markdown("""
### π‘ Example Questions:
- How do you differentiate bacterial from viral pneumonia?
- What are the symptoms of diabetes?
- Explain the mechanism of action of ACE inhibitors
- What are the contraindications for MRI?
""")
# Image analysis tab
with gr.Tab("πΌοΈ Image Analysis", id="image_analysis"):
gr.Markdown("### Medical Image Analysis")
with gr.Row():
with gr.Column(scale=2):
image_input = gr.Image(
type="pil",
label="Upload Medical Image",
height=300
)
image_system = gr.Textbox(
value="You are an expert radiologist.",
label="System Instruction"
)
image_text_input = gr.Textbox(
value="Describe this X-ray",
label="Question about the image",
placeholder="What would you like to know about this image?"
)
image_submit = gr.Button("π Analyze Image", variant="primary")
with gr.Column(scale=2):
image_output = gr.Textbox(
label="Analysis Result",
lines=15,
placeholder="Upload an image and click 'Analyze Image' to see the AI's analysis..."
)
# Event handlers
load_btn.click(
fn=app.load_model,
inputs=[model_choice, use_quantization],
outputs=[model_status]
)
def respond_text(message, history, system_instruction):
if message.strip() == "":
return history, ""
response = app.chat_text_only(message, history, system_instruction)
history.append((message, response))
return history, ""
text_submit.click(
fn=respond_text,
inputs=[text_input, chatbot_text, text_system],
outputs=[chatbot_text, text_input]
)
text_input.submit(
fn=respond_text,
inputs=[text_input, chatbot_text, text_system],
outputs=[chatbot_text, text_input]
)
image_submit.click(
fn=app.chat_with_image,
inputs=[image_text_input, image_input, image_system],
outputs=[image_output]
)
# Example image loading
gr.Markdown("""
---
### π About MedGemma
MedGemma is a collection of Gemma variants trained for medical applications.
Learn more at the [HAI-DEF developer site](https://developers.google.com/health-ai-developer-foundations/medgemma).
**Disclaimer**: This tool is for educational and research purposes only.
Always consult qualified healthcare professionals for medical advice.
""")
if __name__ == "__main__":
demo.launch() |