File size: 13,298 Bytes
2c0541f b458509 2c0541f b458509 f2a6f7e 0756f3b f2a6f7e b458509 0756f3b b458509 2c0541f f2a6f7e 2c0541f f2a6f7e b458509 2c0541f f2a6f7e 0756f3b 2c0541f f2a6f7e 2c0541f e111427 2c0541f e111427 2c0541f e111427 2c0541f f2a6f7e 2c0541f f2a6f7e e111427 f2a6f7e 0756f3b f2a6f7e 0756f3b e111427 f2a6f7e b458509 f2a6f7e b458509 0756f3b 2c0541f b458509 f2a6f7e 2c0541f e111427 0756f3b 2c0541f 0756f3b 2c0541f 0756f3b 2c0541f b458509 f2a6f7e b458509 f2a6f7e b458509 2c0541f b458509 2c0541f b458509 2c0541f f2a6f7e e111427 f2a6f7e 0756f3b f2a6f7e b458509 e111427 b458509 e111427 2c0541f b458509 f2a6f7e 2c0541f f2a6f7e 2c0541f f2a6f7e b458509 f2a6f7e b458509 e111427 b458509 e111427 2c0541f e111427 2c0541f e111427 f2a6f7e 2c0541f f2a6f7e 2c0541f 0756f3b e111427 0756f3b f2a6f7e 2c0541f b458509 2c0541f f2a6f7e b458509 2c0541f b458509 f2a6f7e 2c0541f e111427 b458509 2c0541f e111427 b458509 f2a6f7e e111427 2c0541f 0756f3b 2c0541f f2a6f7e 2c0541f f2a6f7e 2c0541f b458509 2c0541f f2a6f7e b458509 2c0541f e111427 f2a6f7e 2c0541f b458509 2c0541f b458509 f2a6f7e 2c0541f f2a6f7e b458509 e111427 b458509 0756f3b f2a6f7e 2c0541f f2a6f7e e111427 2c0541f b458509 e111427 b458509 0756f3b b458509 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
# app.py - Working MedGemma with Correct Implementation
import gradio as gr
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText, pipeline
from PIL import Image
import os
import logging
from huggingface_hub import login
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Authenticate with Hugging Face
def authenticate_hf():
"""Authenticate with Hugging Face using token"""
try:
hf_token = os.getenv('HF_TOKEN')
if hf_token:
login(token=hf_token)
logger.info("β
Authenticated with Hugging Face")
return True
else:
logger.warning("β οΈ No HF_TOKEN found in environment")
return False
except Exception as e:
logger.error(f"β Authentication failed: {e}")
return False
# Model configuration
MODEL_ID = "google/medgemma-4b-it"
# Global variables
model = None
processor = None
pipeline_model = None
def load_model():
"""Load MedGemma model using the recommended approach"""
global model, processor, pipeline_model
try:
# First authenticate
auth_success = authenticate_hf()
if not auth_success:
logger.error("β Authentication required for MedGemma")
return False
logger.info(f"Loading MedGemma: {MODEL_ID}")
# Method 1: Try using pipeline (recommended by HuggingFace)
try:
logger.info("Attempting to load using pipeline...")
pipeline_model = pipeline(
"image-text-to-text",
model=MODEL_ID,
torch_dtype=torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
trust_remote_code=True
)
logger.info("β
Pipeline model loaded successfully!")
return True
except Exception as e:
logger.warning(f"Pipeline loading failed: {e}")
# Method 2: Try direct model loading
logger.info("Attempting direct model loading...")
# Load processor
processor = AutoProcessor.from_pretrained(
MODEL_ID,
trust_remote_code=True,
token=True
)
logger.info("β
Processor loaded")
# Load model
model = AutoModelForImageTextToText.from_pretrained(
MODEL_ID,
torch_dtype=torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
trust_remote_code=True,
token=True
)
logger.info("β
Model loaded successfully!")
return True
except Exception as e:
logger.error(f"β Error loading model: {str(e)}")
import traceback
logger.error(f"Full traceback: {traceback.format_exc()}")
return False
# Initialize model at startup
model_loaded = load_model()
def analyze_medical_image(image, clinical_question, patient_history=""):
"""Analyze medical image with clinical context"""
global model, processor, pipeline_model
# Check if model is loaded
if not model_loaded:
return """β **Model Loading Issue**
MedGemma failed to load. This is likely due to:
1. **Transformers version**: Make sure you're using transformers >= 4.52.0
2. **Authentication**: Ensure HF_TOKEN is properly set
3. **Model compatibility**: MedGemma requires the latest transformers library
**Status**: Model loading failed. Please try refreshing the page or contact support."""
if image is None:
return "β οΈ Please upload a medical image first."
if not clinical_question.strip():
return "β οΈ Please provide a clinical question."
try:
# Method 1: Use pipeline if available
if pipeline_model is not None:
logger.info("Using pipeline for analysis...")
# Prepare message in the format expected by pipeline
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": f"Patient History: {patient_history}\n\nClinical Question: {clinical_question}\n\nAs MedGemma, provide a detailed medical analysis of this image for educational purposes only."}
]
}
]
# Generate response using pipeline
result = pipeline_model(messages, max_new_tokens=1000)
# Extract response text
response = result[0]['generated_text'] if isinstance(result, list) else result['generated_text']
# Method 2: Use direct model if pipeline failed
elif model is not None and processor is not None:
logger.info("Using direct model for analysis...")
# Prepare messages for direct model
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "You are MedGemma, an expert medical AI assistant. Provide detailed medical analysis for educational purposes only."}]
},
{
"role": "user",
"content": [
{"type": "text", "text": f"Patient History: {patient_history}\n\nClinical Question: {clinical_question}"},
{"type": "image", "image": image}
]
}
]
# Process inputs
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
)
# Generate response
with torch.inference_mode():
outputs = model.generate(
**inputs,
max_new_tokens=1000,
do_sample=True,
temperature=0.3,
top_p=0.9
)
# Decode response
response = processor.decode(outputs[0][inputs["input_ids"].shape[-1]:], skip_special_tokens=True)
else:
return "β No model available for analysis. Please try refreshing the page."
# Clean up response
response = response.strip()
# Add medical disclaimer
disclaimer = """
---
### β οΈ MEDICAL DISCLAIMER
**This analysis is for educational and research purposes only.**
- This AI assistant is not a substitute for professional medical advice
- Always consult qualified healthcare professionals for diagnosis and treatment
- Do not make medical decisions based solely on this analysis
- In case of medical emergency, contact emergency services immediately
---
"""
logger.info("β
Analysis completed successfully")
return response + disclaimer
except Exception as e:
logger.error(f"β Error in analysis: {str(e)}")
import traceback
logger.error(f"Full traceback: {traceback.format_exc()}")
return f"β Analysis failed: {str(e)}\n\nPlease try again with a different image or question."
# Create Gradio interface
def create_interface():
with gr.Blocks(
title="MedGemma Medical Analysis",
theme=gr.themes.Soft(),
css="""
.gradio-container { max-width: 1200px !important; }
.disclaimer { background-color: #fef2f2; border: 1px solid #fecaca; border-radius: 8px; padding: 16px; margin: 16px 0; }
.success { background-color: #f0f9ff; border: 1px solid #bae6fd; border-radius: 8px; padding: 16px; margin: 16px 0; }
.warning { background-color: #fffbeb; border: 1px solid #fed7aa; border-radius: 8px; padding: 16px; margin: 16px 0; }
"""
) as demo:
# Header
gr.Markdown("""
# π₯ MedGemma Medical Image Analysis
**Advanced Medical AI Assistant powered by Google's MedGemma-4B**
Specialized in medical imaging across multiple modalities:
π« **Radiology** β’ π¬ **Histopathology** β’ ποΈ **Ophthalmology** β’ π©Ί **Dermatology**
""")
# Status display
if model_loaded:
method = "Pipeline" if pipeline_model else "Direct Model"
gr.Markdown(f"""
<div class="success">
β
<strong>MEDGEMMA READY</strong><br>
Model loaded successfully using {method} method. Ready for medical image analysis.
</div>
""")
else:
gr.Markdown("""
<div class="warning">
β οΈ <strong>MODEL LOADING FAILED</strong><br>
MedGemma failed to load. Please ensure you have the latest transformers library and proper authentication.
</div>
""")
# Medical disclaimer
gr.Markdown("""
<div class="disclaimer">
β οΈ <strong>IMPORTANT MEDICAL DISCLAIMER</strong><br>
This tool is for <strong>educational and research purposes only</strong>.
Do not upload real patient data. Always consult qualified healthcare professionals.
</div>
""")
with gr.Row():
# Left column
with gr.Column(scale=1):
gr.Markdown("## π€ Medical Image Upload")
image_input = gr.Image(
label="Medical Image",
type="pil",
height=300
)
clinical_question = gr.Textbox(
label="Clinical Question *",
placeholder="Examples:\nβ’ Describe findings in this chest X-ray\nβ’ What pathological changes are visible?\nβ’ Provide differential diagnosis\nβ’ Identify abnormalities",
lines=4
)
patient_history = gr.Textbox(
label="Patient History (Optional)",
placeholder="e.g., 65-year-old male with chronic cough",
lines=2
)
with gr.Row():
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
analyze_btn = gr.Button("π Analyze", variant="primary", size="lg")
# System info
gr.Markdown(f"""
**Status:** {'β
Ready' if model_loaded else 'β Failed'}
**Method:** {'Pipeline' if pipeline_model else 'Direct' if model else 'None'}
**Device:** {'CUDA' if torch.cuda.is_available() else 'CPU'}
**Transformers:** {getattr(__import__('transformers'), '__version__', 'Unknown')}
""")
# Right column
with gr.Column(scale=1):
gr.Markdown("## π Medical Analysis Results")
output = gr.Textbox(
label="AI Medical Analysis",
lines=20,
show_copy_button=True,
placeholder="Upload a medical image and ask a clinical question..." if model_loaded else "Model unavailable - please check system status"
)
# Examples
if model_loaded:
with gr.Accordion("π Example Cases", open=False):
examples = gr.Examples(
examples=[
[
"https://upload.wikimedia.org/wikipedia/commons/c/c8/Chest_Xray_PA_3-8-2010.png",
"Analyze this chest X-ray systematically. Comment on heart size, lung fields, and any abnormalities.",
"Adult patient with respiratory symptoms"
]
],
inputs=[image_input, clinical_question, patient_history]
)
# Event handlers
analyze_btn.click(
fn=analyze_medical_image,
inputs=[image_input, clinical_question, patient_history],
outputs=output,
show_progress=True
)
clear_btn.click(
fn=lambda: (None, "", "", ""),
outputs=[image_input, clinical_question, patient_history, output]
)
# Footer
gr.Markdown("""
---
### π¬ About MedGemma
MedGemma-4B is Google's specialized medical AI model requiring transformers >= 4.52.0.
### π Privacy & Ethics
- Real-time processing, no data storage
- Educational and research purposes only
- No patient data should be uploaded
**Model:** Google MedGemma-4B | **License:** Apache 2.0
""")
return demo
# Launch the app
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |