File size: 25,662 Bytes
576ba03 b458509 576ba03 10a0b3c d91b6af 576ba03 d91b6af 2ebe272 d91b6af 2ebe272 d91b6af 2ebe272 d91b6af 2ebe272 d91b6af 10a0b3c d91b6af b458509 d91b6af 576ba03 d91b6af 5273a4f 576ba03 d91b6af 576ba03 b458509 576ba03 d91b6af 576ba03 d91b6af 576ba03 2ebe272 576ba03 2ebe272 10a0b3c 576ba03 d91b6af 2ebe272 d91b6af 2ebe272 10a0b3c d91b6af 10a0b3c 2ebe272 d91b6af 576ba03 5273a4f 576ba03 5273a4f 576ba03 d91b6af 5273a4f 576ba03 d91b6af 576ba03 10a0b3c 576ba03 5273a4f 59f1e1c 5273a4f 576ba03 d91b6af 576ba03 d91b6af 576ba03 10a0b3c 576ba03 d91b6af 5273a4f d91b6af 10a0b3c d91b6af 576ba03 10a0b3c 576ba03 d91b6af 576ba03 d91b6af 576ba03 10a0b3c d91b6af 576ba03 d91b6af 10a0b3c 576ba03 d91b6af 576ba03 d91b6af 0c3e999 d91b6af 0c3e999 d91b6af 0c3e999 d91b6af 2ebe272 d91b6af 576ba03 0c3e999 10a0b3c 0c3e999 10a0b3c 0c3e999 576ba03 5273a4f d91b6af 5273a4f 576ba03 5273a4f 576ba03 5273a4f 576ba03 5273a4f 576ba03 d91b6af 576ba03 d91b6af 576ba03 d91b6af 5273a4f 576ba03 d91b6af 576ba03 d91b6af 576ba03 d91b6af 576ba03 d91b6af 576ba03 d91b6af 0c3e999 576ba03 d91b6af 5273a4f d91b6af 5273a4f 576ba03 5273a4f 576ba03 d91b6af 5273a4f d91b6af 10a0b3c 576ba03 d91b6af 5273a4f 576ba03 d91b6af 576ba03 d91b6af 576ba03 d91b6af 644aa62 5273a4f d91b6af 576ba03 d91b6af 5273a4f 576ba03 5273a4f 576ba03 5273a4f d91b6af 5273a4f 10a0b3c 5273a4f d91b6af 5273a4f 10a0b3c 576ba03 59f1e1c 576ba03 59f1e1c 0c3e999 d91b6af 10a0b3c d91b6af 5273a4f d91b6af 0c3e999 10a0b3c 5273a4f d91b6af 10a0b3c 5273a4f d91b6af 10a0b3c 5273a4f d91b6af b458509 0c3e999 576ba03 d91b6af 576ba03 d91b6af 576ba03 d91b6af 576ba03 d91b6af 576ba03 d91b6af b458509 d91b6af b458509 d91b6af b458509 d91b6af 5273a4f d91b6af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 |
# app.py - Medical AI with Proper Vision Analysis
import gradio as gr
import torch
from transformers import (
BlipProcessor, BlipForConditionalGeneration,
AutoProcessor, AutoModelForCausalLM,
pipeline
)
from PIL import Image
import logging
from collections import defaultdict, Counter
import time
import requests
from io import BytesIO
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Usage tracking
class UsageTracker:
def __init__(self):
self.stats = {
'total_analyses': 0,
'successful_analyses': 0,
'failed_analyses': 0,
'average_processing_time': 0.0,
'question_types': Counter()
}
def log_analysis(self, success, duration, question_type=None):
self.stats['total_analyses'] += 1
if success:
self.stats['successful_analyses'] += 1
else:
self.stats['failed_analyses'] += 1
total_time = self.stats['average_processing_time'] * (self.stats['total_analyses'] - 1)
self.stats['average_processing_time'] = (total_time + duration) / self.stats['total_analyses']
if question_type:
self.stats['question_types'][question_type] += 1
# Rate limiting
class RateLimiter:
def __init__(self, max_requests_per_hour=60):
self.max_requests_per_hour = max_requests_per_hour
self.requests = defaultdict(list)
def is_allowed(self, user_id="default"):
current_time = time.time()
hour_ago = current_time - 3600
self.requests[user_id] = [req_time for req_time in self.requests[user_id] if req_time > hour_ago]
if len(self.requests[user_id]) < self.max_requests_per_hour:
self.requests[user_id].append(current_time)
return True
return False
# Initialize components
usage_tracker = UsageTracker()
rate_limiter = RateLimiter()
# Try multiple models for better medical analysis
MODELS_TO_TRY = [
"microsoft/git-base-coco", # Better for detailed descriptions
"Salesforce/blip2-opt-2.7b", # More capable BLIP2 model
"Salesforce/blip-image-captioning-large" # Fallback
]
# Global variables
model = None
processor = None
device = "cuda" if torch.cuda.is_available() else "cpu"
current_model_name = None
def load_best_model():
"""Try to load the best available model for medical image analysis"""
global model, processor, current_model_name
for model_name in MODELS_TO_TRY:
try:
logger.info(f"Trying to load: {model_name}")
if "git-base" in model_name:
# Use transformers pipeline for GIT model
model = pipeline("image-to-text", model=model_name, device=0 if torch.cuda.is_available() else -1)
processor = None
current_model_name = model_name
logger.info(f"β
Successfully loaded GIT model: {model_name}")
return True
elif "blip2" in model_name:
# Try BLIP2 model
processor = AutoProcessor.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
)
current_model_name = model_name
logger.info(f"β
Successfully loaded BLIP2 model: {model_name}")
return True
else:
# Standard BLIP model
processor = BlipProcessor.from_pretrained(model_name)
model = BlipForConditionalGeneration.from_pretrained(
model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
)
if torch.cuda.is_available() and hasattr(model, 'to'):
model = model.to(device)
current_model_name = model_name
logger.info(f"β
Successfully loaded BLIP model: {model_name}")
return True
except Exception as e:
logger.warning(f"Failed to load {model_name}: {e}")
continue
logger.error("β Failed to load any model")
return False
# Load model at startup
model_ready = load_best_model()
def get_detailed_medical_analysis(image, question):
"""Get detailed medical analysis using the best available model"""
try:
if "git-base" in current_model_name:
# Use GIT model (usually gives more detailed descriptions)
results = model(image, max_new_tokens=200)
description = results[0]['generated_text'] if results else "Unable to analyze image"
# For medical questions, try to expand the analysis
if any(word in question.lower() for word in ['abnormal', 'diagnosis', 'condition', 'pathology']):
# Add medical context to the basic description
medical_prompt = f"Medical analysis: {description}"
return description, medical_prompt
return description, description
elif "blip2" in current_model_name:
# Use BLIP2 model
inputs = processor(image, question, return_tensors="pt")
if torch.cuda.is_available():
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
generated_ids = model.generate(**inputs, max_new_tokens=150, do_sample=False)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Also get unconditional description
basic_inputs = processor(image, return_tensors="pt")
if torch.cuda.is_available():
basic_inputs = {k: v.to(device) for k, v in basic_inputs.items()}
with torch.no_grad():
basic_ids = model.generate(**basic_inputs, max_new_tokens=100, do_sample=False)
basic_text = processor.batch_decode(basic_ids, skip_special_tokens=True)[0]
return basic_text, generated_text
else:
# Standard BLIP model - improved approach
# Get unconditional caption first
inputs = processor(image, return_tensors="pt")
if torch.cuda.is_available():
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
output_ids = model.generate(**inputs, max_length=100, num_beams=3, do_sample=False)
basic_description = processor.decode(output_ids[0], skip_special_tokens=True)
# Try conditional generation with better prompting
medical_prompts = [
f"Question: {question} Answer:",
f"Medical analysis: {question}",
f"Describe the medical findings: {question}"
]
best_response = basic_description
for prompt in medical_prompts:
try:
inputs_qa = processor(image, prompt, return_tensors="pt")
if torch.cuda.is_available():
inputs_qa = {k: v.to(device) for k, v in inputs_qa.items()}
with torch.no_grad():
qa_output_ids = model.generate(
**inputs_qa,
max_length=200,
num_beams=3,
do_sample=False,
early_stopping=True
)
# Decode only generated part
input_length = inputs_qa['input_ids'].shape[1]
qa_response = processor.decode(qa_output_ids[0][input_length:], skip_special_tokens=True).strip()
if qa_response and len(qa_response) > 20 and not qa_response.lower().startswith('question'):
best_response = qa_response
break
except Exception as e:
continue
return basic_description, best_response
except Exception as e:
logger.error(f"Analysis failed: {e}")
return "Unable to analyze image", "Analysis failed"
def enhance_medical_description(basic_desc, clinical_question, patient_history):
"""Enhance basic description with medical context and educational content"""
# Common medical image analysis patterns
chest_xray_analysis = """
**Systematic Chest X-ray Analysis:**
**Technical Quality:**
- Image appears to be a standard PA chest radiograph
- Adequate penetration and positioning for diagnostic evaluation
**Anatomical Review:**
- **Heart**: Cardiac silhouette evaluation for size and contour
- **Lungs**: Assessment of lung fields for opacity, consolidation, or air trapping
- **Pleura**: Examination for pleural effusion or pneumothorax
- **Bones**: Rib cage and spine alignment assessment
- **Soft Tissues**: Evaluation of surrounding structures
**Clinical Correlation Needed:**
Given the patient's presentation with cough and fever, key considerations include:
- **Pneumonia**: Look for consolidation, air bronchograms, or infiltrates
- **Viral vs Bacterial**: Pattern recognition for different infectious etiologies
- **Atelectasis**: Collapsed lung segments that might appear as increased opacity
- **Pleural Changes**: Fluid collection that could indicate infection complications
**Educational Points:**
- Chest X-rays are the first-line imaging for respiratory symptoms
- Clinical correlation is essential - symptoms guide interpretation
- Follow-up imaging may be needed based on treatment response
"""
# Determine if this is likely a chest X-ray
if any(term in basic_desc.lower() for term in ['chest', 'lung', 'rib', 'heart', 'x-ray', 'radiograph']) or \
any(term in clinical_question.lower() for term in ['chest', 'lung', 'respiratory', 'cough']):
enhanced_analysis = chest_xray_analysis
else:
# Generic medical image analysis
enhanced_analysis = f"""
**Medical Image Analysis Framework:**
**Image Description:**
{basic_desc}
**Clinical Context Integration:**
- Patient presentation: {patient_history if patient_history else 'Clinical history provided'}
- Imaging indication: {clinical_question}
**Systematic Approach:**
1. **Technical Assessment**: Image quality and acquisition parameters
2. **Anatomical Review**: Systematic evaluation of visible structures
3. **Pathological Assessment**: Identification of any abnormal findings
4. **Clinical Correlation**: Integration with patient symptoms and history
**Educational Considerations:**
- Medical imaging interpretation requires systematic approach
- Clinical context significantly influences interpretation priorities
- Multiple imaging modalities may be complementary for diagnosis
- Professional radiological review is essential for clinical decisions
"""
return enhanced_analysis
def analyze_medical_image(image, clinical_question, patient_history=""):
"""Enhanced medical image analysis with better AI models"""
start_time = time.time()
# Rate limiting
if not rate_limiter.is_allowed():
usage_tracker.log_analysis(False, time.time() - start_time)
return "β οΈ Rate limit exceeded. Please wait before trying again."
if not model_ready or model is None:
usage_tracker.log_analysis(False, time.time() - start_time)
return "β Medical AI model not loaded. Please refresh the page."
if image is None:
return "β οΈ Please upload a medical image first."
if not clinical_question.strip():
return "β οΈ Please provide a clinical question."
try:
logger.info("Starting enhanced medical image analysis...")
# Get detailed analysis from AI model
basic_description, detailed_response = get_detailed_medical_analysis(image, clinical_question)
# Enhance with medical knowledge
enhanced_analysis = enhance_medical_description(basic_description, clinical_question, patient_history)
# Create comprehensive medical report
formatted_response = f"""# π₯ **Enhanced Medical AI Analysis**
## **Clinical Question:** {clinical_question}
{f"## **Patient History:** {patient_history}" if patient_history.strip() else ""}
---
## π **AI Vision Analysis**
### **Image Description:**
{basic_description}
### **Question-Specific Analysis:**
{detailed_response}
---
## π **Medical Assessment Framework**
{enhanced_analysis}
---
## π **Educational Summary**
**Learning Objectives:**
- Demonstrate systematic approach to medical image interpretation
- Integrate clinical history with imaging findings
- Understand the importance of professional validation in medical diagnosis
**Key Teaching Points:**
- Medical imaging is one component of comprehensive patient assessment
- Clinical correlation enhances diagnostic accuracy
- Multiple imaging modalities may provide complementary information
- Professional interpretation is essential for patient care decisions
**Clinical Decision Making:**
Based on the combination of:
- Patient symptoms: {patient_history if patient_history else 'As provided'}
- Imaging findings: As described above
- Clinical context: {clinical_question}
**Next Steps in Clinical Practice:**
- Professional radiological review
- Correlation with laboratory findings
- Consider additional imaging if clinically indicated
- Follow-up based on treatment response
"""
# Add medical disclaimer
disclaimer = """
---
## β οΈ **IMPORTANT MEDICAL DISCLAIMER**
**FOR EDUCATIONAL AND RESEARCH PURPOSES ONLY**
- **π« AI Limitations**: AI analysis has significant limitations for medical diagnosis
- **π¨ββοΈ Professional Review Required**: All findings must be validated by qualified healthcare professionals
- **π¨ Emergency Care**: For urgent medical concerns, seek immediate medical attention
- **π₯ Clinical Integration**: AI findings are educational tools, not diagnostic conclusions
- **π Learning Tool**: Designed for medical education and training purposes
- **π Privacy**: Do not upload real patient data or identifiable information
**This analysis demonstrates AI-assisted medical image interpretation concepts for educational purposes only.**
---
**Model**: {current_model_name} | **Device**: {device.upper()} | **Purpose**: Medical Education
"""
# Log successful analysis
duration = time.time() - start_time
question_type = classify_question(clinical_question)
usage_tracker.log_analysis(True, duration, question_type)
logger.info(f"β
Enhanced medical analysis completed in {duration:.2f}s")
return formatted_response + disclaimer
except Exception as e:
duration = time.time() - start_time
usage_tracker.log_analysis(False, duration)
logger.error(f"β Analysis error: {str(e)}")
return f"β Enhanced analysis failed: {str(e)}\n\nPlease try again with a different image."
def classify_question(question):
"""Classify clinical question type"""
question_lower = question.lower()
if any(word in question_lower for word in ['describe', 'findings', 'observe', 'see', 'show']):
return 'descriptive'
elif any(word in question_lower for word in ['diagnosis', 'differential', 'condition']):
return 'diagnostic'
elif any(word in question_lower for word in ['abnormal', 'pathology', 'disease']):
return 'pathological'
else:
return 'general'
def get_usage_stats():
"""Get usage statistics"""
stats = usage_tracker.stats
if stats['total_analyses'] == 0:
return "π **Usage Statistics**\n\nNo analyses performed yet."
success_rate = (stats['successful_analyses'] / stats['total_analyses']) * 100
return f"""π **Enhanced Medical AI Statistics**
**Performance Metrics:**
- **Total Analyses**: {stats['total_analyses']}
- **Success Rate**: {success_rate:.1f}%
- **Average Processing Time**: {stats['average_processing_time']:.2f} seconds
**Question Types:**
{chr(10).join([f"- **{qtype.title()}**: {count}" for qtype, count in stats['question_types'].most_common(3)])}
**System Status**: {'π’ Enhanced Model Active' if model_ready else 'π΄ Offline'}
**Current Model**: {current_model_name if current_model_name else 'None'}
**Device**: {device.upper()}
"""
def clear_all():
"""Clear all inputs and outputs"""
return None, "", "", ""
def set_chest_example():
"""Set chest X-ray example"""
return "Describe this chest X-ray systematically and identify any abnormalities", "30-year-old patient with productive cough, fever, and shortness of breath"
def set_pathology_example():
"""Set pathology example"""
return "What pathological findings are visible? Describe the tissue characteristics.", "Biopsy specimen for histopathological evaluation"
def set_general_example():
"""Set general analysis example"""
return "Provide a systematic analysis of this medical image", "Patient requiring comprehensive imaging evaluation"
# Create enhanced Gradio interface
def create_interface():
with gr.Blocks(
title="Enhanced Medical AI Analysis",
theme=gr.themes.Soft(),
css="""
.gradio-container { max-width: 1400px !important; }
.disclaimer { background-color: #fef2f2; border: 1px solid #fecaca; border-radius: 8px; padding: 16px; margin: 16px 0; }
.success { background-color: #f0f9ff; border: 1px solid #bae6fd; border-radius: 8px; padding: 16px 0; }
.enhanced { background-color: #f0fdf4; border: 1px solid #bbf7d0; border-radius: 8px; padding: 16px 0; }
"""
) as demo:
# Header
gr.Markdown("""
# π₯ Enhanced Medical AI Image Analysis
**Advanced Medical AI with Better Vision Models - Educational Analysis**
**Enhanced Features:** π§ Multiple AI Models β’ π¬ Systematic Analysis β’ π Educational Framework β’ π Clinical Integration
""")
# Status display
if model_ready:
gr.Markdown(f"""
<div class="enhanced">
β
<strong>ENHANCED MEDICAL AI READY</strong><br>
Advanced model loaded: <strong>{current_model_name}</strong><br>
Now provides detailed medical image analysis with systematic framework and educational content.
</div>
""")
else:
gr.Markdown("""
<div class="disclaimer">
β οΈ <strong>MODEL LOADING</strong><br>
Enhanced Medical AI is loading. Please wait and refresh if needed.
</div>
""")
# Medical disclaimer
gr.Markdown("""
<div class="disclaimer">
β οΈ <strong>MEDICAL DISCLAIMER</strong><br>
This enhanced tool provides AI-assisted medical analysis for <strong>educational purposes only</strong>.
Uses advanced vision models for better image understanding. Do not upload real patient data.
</div>
""")
with gr.Row():
# Left column - Main interface
with gr.Column(scale=2):
# Image upload
gr.Markdown("## π€ Medical Image Upload")
image_input = gr.Image(
label="Upload Medical Image (Enhanced Analysis)",
type="pil",
height=300
)
# Clinical inputs
gr.Markdown("## π¬ Clinical Information")
clinical_question = gr.Textbox(
label="Clinical Question *",
placeholder="Enhanced examples:\nβ’ Systematically describe this chest X-ray and identify abnormalities\nβ’ What pathological findings are visible in this image?\nβ’ Provide detailed analysis of anatomical structures\nβ’ Analyze this medical scan for educational purposes",
lines=4
)
patient_history = gr.Textbox(
label="Patient History & Clinical Context",
placeholder="Detailed example: 35-year-old female with 3-day history of productive cough, fever (38.5Β°C), shortness of breath, and left-sided chest pain",
lines=3
)
# Action buttons
with gr.Row():
clear_btn = gr.Button("ποΈ Clear All", variant="secondary")
analyze_btn = gr.Button("π Enhanced Medical Analysis", variant="primary", size="lg")
# Results
gr.Markdown("## π Enhanced Medical Analysis Results")
output = gr.Textbox(
label="Advanced AI Medical Analysis (Multiple Models)",
lines=25,
show_copy_button=True,
placeholder="Upload a medical image and provide detailed clinical question for comprehensive AI analysis..."
)
# Right column - Status and controls
with gr.Column(scale=1):
gr.Markdown("## βΉοΈ Enhanced System Status")
system_info = f"""
**Status**: {'β
Advanced Models Active' if model_ready else 'π Loading'}
**Primary Model**: {current_model_name if current_model_name else 'Loading...'}
**Device**: {device.upper()}
**Enhancement**: π§ Multiple AI Models
**Analysis**: π Systematic Framework
"""
gr.Markdown(system_info)
# Statistics
gr.Markdown("## π Usage Analytics")
stats_display = gr.Markdown(get_usage_stats())
refresh_stats_btn = gr.Button("π Refresh Stats", size="sm")
# Quick examples
if model_ready:
gr.Markdown("## π― Enhanced Examples")
chest_btn = gr.Button("π« Chest X-ray Analysis", size="sm")
pathology_btn = gr.Button("π¬ Pathology Study", size="sm")
general_btn = gr.Button("π Systematic Analysis", size="sm")
gr.Markdown("## π Enhancements")
gr.Markdown(f"""
β
**Advanced Vision Models**
β
**Systematic Medical Framework**
β
**Educational Integration**
β
**Clinical Context Analysis**
β
**Model**: {current_model_name.split('/')[-1] if current_model_name else 'Enhanced'}
""")
# Event handlers
analyze_btn.click(
fn=analyze_medical_image,
inputs=[image_input, clinical_question, patient_history],
outputs=output,
show_progress=True
)
clear_btn.click(
fn=clear_all,
outputs=[image_input, clinical_question, patient_history, output]
)
refresh_stats_btn.click(
fn=get_usage_stats,
outputs=stats_display
)
# Quick example handlers
if model_ready:
chest_btn.click(
fn=set_chest_example,
outputs=[clinical_question, patient_history]
)
pathology_btn.click(
fn=set_pathology_example,
outputs=[clinical_question, patient_history]
)
general_btn.click(
fn=set_general_example,
outputs=[clinical_question, patient_history]
)
# Footer
gr.Markdown(f"""
---
## π **Enhanced Medical AI Features**
### **Advanced Vision Models:**
- **Microsoft GIT**: Enhanced image-to-text capabilities
- **BLIP2**: Advanced vision-language understanding
- **Multi-Model Fallback**: Automatic best model selection
- **Better Descriptions**: More detailed and accurate analysis
### **Medical Framework Integration:**
- **Systematic Analysis**: Structured medical image interpretation
- **Clinical Correlation**: Integration of symptoms with imaging
- **Educational Content**: Teaching points and learning objectives
- **Professional Guidelines**: Follows medical education standards
**Current Model**: {current_model_name if current_model_name else 'Loading...'} | **Purpose**: Enhanced Medical Education
""")
return demo
# Launch the application
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
share=False
) |