File size: 10,286 Bytes
7b61043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
749e99b
 
7b61043
 
 
 
241f531
 
7b61043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88ee262
7b61043
 
88ee262
7b61043
 
 
 
88ee262
241f531
eaedef8
7b61043
88ee262
7b61043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdbf2dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
"""Credit to https://github.com/THUDM/ChatGLM2-6B/blob/main/web_demo.py while mistakes are mine."""
# pylint: disable=broad-exception-caught, redefined-outer-name, missing-function-docstring, missing-module-docstring, too-many-arguments, line-too-long, invalid-name, redefined-builtin, redefined-argument-from-local
# import gradio as gr

# model_name = "models/THUDM/chatglm2-6b-int4"
# gr.load(model_name).lauch()

# %%writefile demo-4bit.py

import os
import time
from textwrap import dedent

import gradio as gr
import mdtex2html
import torch
from loguru import logger
from transformers import AutoModel, AutoTokenizer

# fix timezone in Linux
os.environ["TZ"] = "Asia/Shanghai"
try:
    time.tzset()  # type: ignore # pylint: disable=no-member
except Exception:
    # Windows
    logger.warning("Windows, cant run time.tzset()")

#model_name = "wangrongsheng/IvyGPT-35" 
model_name = "OpenMEDLab/PULSE-7bv5"

RETRY_FLAG = False

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
#model = AutoModel.from_pretrained(model_name, trust_remote_code=True).quantize(4).half().cuda()
model = AutoModel.from_pretrained(model_name, trust_remote_code=True).half().cuda()
model = model.eval()

_ = """Override Chatbot.postprocess"""


def postprocess(self, y):
    if y is None:
        return []
    for i, (message, response) in enumerate(y):
        y[i] = (
            None if message is None else mdtex2html.convert((message)),
            None if response is None else mdtex2html.convert(response),
        )
    return y


gr.Chatbot.postprocess = postprocess


def parse_text(text):
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split("`")
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = "<br></code></pre>"
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", r"\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>" + line
    text = "".join(lines)
    return text


def predict(
    RETRY_FLAG, input, chatbot, max_length, top_p, temperature, history, past_key_values
):
    try:
        chatbot.append((parse_text(input), ""))
    except Exception as exc:
        logger.error(exc)
        logger.debug(f"{chatbot=}")
        _ = """
        if chatbot:
            chatbot[-1] = (parse_text(input), str(exc))
            yield chatbot, history, past_key_values
        # """
        yield chatbot, history, past_key_values
    """
    for response, history, past_key_values in model.stream_chat(
        tokenizer,
        input,
        history,
        past_key_values=past_key_values,
        return_past_key_values=True,
        max_length=max_length,
        top_p=top_p,
        temperature=temperature,
    ):
    """
    for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p,
                                               temperature=temperature):
        chatbot[-1] = (parse_text(input), parse_text(response))

        yield chatbot, history, past_key_values


def trans_api(input, max_length=40960, top_p=0.7, temperature=0.95):
    if max_length < 10:
        max_length = 40960
    if top_p < 0.1 or top_p > 1:
        top_p = 0.7
    if temperature <= 0 or temperature > 1:
        temperature = 0.01
    try:
        res, _ = model.chat(
            tokenizer,
            input,
            history=[],
            past_key_values=None,
            max_length=max_length,
            top_p=top_p,
            temperature=temperature,
        )
        # logger.debug(f"{res=} \n{_=}")
    except Exception as exc:
        logger.error(f"{exc=}")
        res = str(exc)

    return res


def reset_user_input():
    return gr.update(value="")


def reset_state():
    return [], [], None


# Delete last turn
def delete_last_turn(chat, history):
    if chat and history:
        chat.pop(-1)
        history.pop(-1)
    return chat, history


# Regenerate response
def retry_last_answer(
    user_input, chatbot, max_length, top_p, temperature, history, past_key_values
):
    if chatbot and history:
        # Removing the previous conversation from chat
        chatbot.pop(-1)
        # Setting up a flag to capture a retry
        RETRY_FLAG = True
        # Getting last message from user
        user_input = history[-1][0]
        # Removing bot response from the history
        history.pop(-1)

    yield from predict(
        RETRY_FLAG,  # type: ignore
        user_input,
        chatbot,
        max_length,
        top_p,
        temperature,
        history,
        past_key_values,
    )


with gr.Blocks(title="IvyGPT", theme=gr.themes.Soft(text_size="sm")) as demo:
    # gr.HTML("""<h1 align="center">ChatGLM2-6B-int4</h1>""")
    gr.HTML(
        """<h1 align="center">IvyGPT医疗对话大模型</h1>"""
    )

    with gr.Accordion("🎈 Info", open=False):
        _ = f"""
            ## 欢迎体验IvyGPT

            近期在通用领域中出现的大语言模型(LLMs),例如ChatGPT,在遵循指令和产生类人响应方面表现出了显著的成功。然而,这样的大型语言模型并没有被广泛应用于医学领域,导致响应的准确性较差,无法提供关于医学诊断、药物等合理的建议。IvyGPT是一个医疗大语言模型,它在高质量的医学问答数据上进行了监督微调,并使用人类反馈的强化学习进行了训练。
            
            [模型下载地址](https://huggingface.co/wangrongsheng/)             
            """
        gr.Markdown(dedent(_))
    chatbot = gr.Chatbot()
    with gr.Row():
        with gr.Column(scale=4):
            with gr.Column(scale=12):
                user_input = gr.Textbox(
                    show_label=False,
                    placeholder="Input...",
                ).style(container=False)
                RETRY_FLAG = gr.Checkbox(value=False, visible=False)
            with gr.Column(min_width=32, scale=1):
                with gr.Row():
                    submitBtn = gr.Button("Submit", variant="primary")
                    deleteBtn = gr.Button("删除最后一条对话", variant="secondary")
                    retryBtn = gr.Button("重新生成Regenerate", variant="secondary")
        with gr.Column(scale=1):
            emptyBtn = gr.Button("Clear History")
            max_length = gr.Slider(
                0,
                32768,
                value=8192,
                step=1.0,
                label="Maximum length",
                interactive=True,
            )
            top_p = gr.Slider(
                0, 1, value=0.85, step=0.01, label="Top P", interactive=True
            )
            temperature = gr.Slider(
                0.01, 1, value=0.95, step=0.01, label="Temperature", interactive=True
            )

    history = gr.State([])
    past_key_values = gr.State(None)

    user_input.submit(
        predict,
        [
            RETRY_FLAG,
            user_input,
            chatbot,
            max_length,
            top_p,
            temperature,
            history,
            past_key_values,
        ],
        [chatbot, history, past_key_values],
        show_progress="full",
    )
    submitBtn.click(
        predict,
        [
            RETRY_FLAG,
            user_input,
            chatbot,
            max_length,
            top_p,
            temperature,
            history,
            past_key_values,
        ],
        [chatbot, history, past_key_values],
        show_progress="full",
        api_name="predict",
    )
    submitBtn.click(reset_user_input, [], [user_input])

    emptyBtn.click(
        reset_state, outputs=[chatbot, history, past_key_values], show_progress="full"
    )

    retryBtn.click(
        retry_last_answer,
        inputs=[
            user_input,
            chatbot,
            max_length,
            top_p,
            temperature,
            history,
            past_key_values,
        ],
        # outputs = [chatbot, history, last_user_message, user_message]
        outputs=[chatbot, history, past_key_values],
    )
    deleteBtn.click(delete_last_turn, [chatbot, history], [chatbot, history])

    with gr.Accordion("Example inputs", open=True):
        examples = gr.Examples(
            examples=[
                ["熬夜对身体有什么危害? "],
                ["新冠肺炎怎么预防"],
                ["系统性红斑狼疮的危害和治疗方法是什么?"],
            ],
            inputs=[user_input],
            examples_per_page=50,
        )

    with gr.Accordion("For Chat/Translation API", open=False, visible=False):
        input_text = gr.Text()
        tr_btn = gr.Button("Go", variant="primary")
        out_text = gr.Text()
    tr_btn.click(
        trans_api,
        [input_text, max_length, top_p, temperature],
        out_text,
        # show_progress="full",
        api_name="tr",
    )
    _ = """
    input_text.submit(
        trans_api,
        [input_text, max_length, top_p, temperature],
        out_text,
        show_progress="full",
        api_name="tr1",
    )
    # """

# demo.queue().launch(share=False, inbrowser=True)
# demo.queue().launch(share=True, inbrowser=True, debug=True)

# concurrency_count > 1 requires more memory, max_size: queue size
# T4 medium: 30GB, model size: ~4G concurrency_count = 6
# leave one for api access
# reduce to 5 if OOM occurs to often

demo.queue(concurrency_count=3, max_size=30).launch(debug=True)