Spaces:
Running
Running
""" | |
A simple wrapper for the official ChatGPT API | |
""" | |
import json | |
import os | |
import threading | |
import time | |
import requests | |
import tiktoken | |
from typing import Generator | |
from queue import PriorityQueue as PQ | |
import json | |
import os | |
import time | |
ENCODER = tiktoken.get_encoding("gpt2") | |
class chatPaper: | |
""" | |
Official ChatGPT API | |
""" | |
def __init__( | |
self, | |
api_keys: list, | |
proxy = None, | |
api_proxy = None, | |
max_tokens: int = 4000, | |
temperature: float = 0.5, | |
top_p: float = 1.0, | |
model_name: str = "gpt-3.5-turbo", | |
reply_count: int = 1, | |
system_prompt = "You are ChatPaper, A paper reading bot", | |
lastAPICallTime = time.time()-100, | |
apiTimeInterval = 20, | |
) -> None: | |
self.model_name = model_name | |
self.system_prompt = system_prompt | |
self.apiTimeInterval = apiTimeInterval | |
self.session = requests.Session() | |
self.api_keys = PQ() | |
for key in api_keys: | |
self.api_keys.put((lastAPICallTime,key)) | |
self.proxy = proxy | |
if self.proxy: | |
proxies = { | |
"http": self.proxy, | |
"https": self.proxy, | |
} | |
self.session.proxies = proxies | |
self.max_tokens = max_tokens | |
self.temperature = temperature | |
self.top_p = top_p | |
self.reply_count = reply_count | |
self.decrease_step = 250 | |
self.conversation = {} | |
if self.token_str(self.system_prompt) > self.max_tokens: | |
raise Exception("System prompt is too long") | |
self.lock = threading.Lock() | |
def get_api_key(self): | |
with self.lock: | |
apiKey = self.api_keys.get() | |
delay = self._calculate_delay(apiKey) | |
time.sleep(delay) | |
self.api_keys.put((time.time(), apiKey[1])) | |
return apiKey[1] | |
def _calculate_delay(self, apiKey): | |
elapsed_time = time.time() - apiKey[0] | |
if elapsed_time < self.apiTimeInterval: | |
return self.apiTimeInterval - elapsed_time | |
else: | |
return 0 | |
def add_to_conversation(self, message: str, role: str, convo_id: str = "default"): | |
if(convo_id not in self.conversation): | |
self.reset(convo_id) | |
self.conversation[convo_id].append({"role": role, "content": message}) | |
def __truncate_conversation(self, convo_id: str = "default"): | |
""" | |
Truncate the conversation | |
""" | |
last_dialog = self.conversation[convo_id][-1] | |
query = str(last_dialog['content']) | |
if(len(ENCODER.encode(str(query)))>self.max_tokens): | |
query = query[:int(1.5*self.max_tokens)] | |
while(len(ENCODER.encode(str(query)))>self.max_tokens): | |
query = query[:self.decrease_step] | |
self.conversation[convo_id] = self.conversation[convo_id][:-1] | |
full_conversation = "\n".join([str(x["content"]) for x in self.conversation[convo_id]],) | |
if len(ENCODER.encode(full_conversation)) > self.max_tokens: | |
self.conversation_summary(convo_id=convo_id) | |
full_conversation = "" | |
for x in self.conversation[convo_id]: | |
full_conversation = str(x["content"]) + "\n" + full_conversation | |
max_len_full_conversation = self.max_tokens - self.decrease_step | |
if len(ENCODER.encode(full_conversation)) > max_len_full_conversation: | |
full_conversation = full_conversation[:-max_len_full_conversation] | |
while True: | |
if (len(ENCODER.encode(full_conversation+query)) > self.max_tokens): | |
query = query[:self.decrease_step] | |
else: | |
break | |
last_dialog['content'] = str(query) | |
self.conversation[convo_id].append(last_dialog) | |
def ask_stream( | |
self, | |
prompt: str, | |
role: str = "user", | |
convo_id: str = "default", | |
**kwargs, | |
) -> Generator: | |
if convo_id not in self.conversation: | |
self.reset(convo_id=convo_id) | |
self.add_to_conversation(prompt, "user", convo_id=convo_id) | |
self.__truncate_conversation(convo_id=convo_id) | |
apiKey = self.get_api_key() | |
response = self.session.post( | |
"https://api.openai.com/v1/chat/completions", | |
headers={"Authorization": f"Bearer {kwargs.get('api_key', apiKey)}"}, | |
json={ | |
"model": self.model_name, | |
"messages": self.conversation[convo_id], | |
"stream": True, | |
# kwargs | |
"temperature": kwargs.get("temperature", self.temperature), | |
"top_p": kwargs.get("top_p", self.top_p), | |
"n": kwargs.get("n", self.reply_count), | |
"user": role, | |
}, | |
stream=True, | |
) | |
if response.status_code != 200: | |
raise Exception( | |
f"Error: {response.status_code} {response.reason} {response.text}", | |
) | |
for line in response.iter_lines(): | |
if not line: | |
continue | |
# Remove "data: " | |
line = line.decode("utf-8")[6:] | |
if line == "[DONE]": | |
break | |
resp: dict = json.loads(line) | |
choices = resp.get("choices") | |
if not choices: | |
continue | |
delta = choices[0].get("delta") | |
if not delta: | |
continue | |
if "content" in delta: | |
content = delta["content"] | |
yield content | |
def ask(self, prompt: str, role: str = "user", convo_id: str = "default", **kwargs): | |
""" | |
Non-streaming ask | |
""" | |
response = self.ask_stream( | |
prompt=prompt, | |
role=role, | |
convo_id=convo_id, | |
**kwargs, | |
) | |
full_response: str = "".join(response) | |
self.add_to_conversation(full_response, role, convo_id=convo_id) | |
usage_token = self.token_str(prompt) | |
com_token = self.token_str(full_response) | |
total_token = self.token_cost(convo_id=convo_id) | |
return full_response, usage_token, com_token, total_token | |
def check_api_available(self): | |
response = self.session.post( | |
"https://api.openai.com/v1/chat/completions", | |
headers={"Authorization": f"Bearer {self.get_api_key()}"}, | |
json={ | |
"model": self.model_name, | |
"messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "print A"}], | |
"stream": True, | |
# kwargs | |
"temperature": self.temperature, | |
"top_p": self.top_p, | |
"n": self.reply_count, | |
"user": "user", | |
}, | |
stream=True, | |
) | |
if response.status_code == 200: | |
return True | |
else: | |
return False | |
def reset(self, convo_id: str = "default", system_prompt = None): | |
""" | |
Reset the conversation | |
""" | |
self.conversation[convo_id] = [ | |
{"role": "system", "content": str(system_prompt or self.system_prompt)}, | |
] | |
def conversation_summary(self, convo_id: str = "default"): | |
input = "" | |
role = "" | |
for conv in self.conversation[convo_id]: | |
if (conv["role"]=='user'): | |
role = 'User' | |
else: | |
role = 'ChatGpt' | |
input+=role+' : '+conv['content']+'\n' | |
prompt = "Your goal is to summarize the provided conversation in English. Your summary should be concise and focus on the key information to facilitate better dialogue for the large language model.Ensure that you include all necessary details and relevant information while still reducing the length of the conversation as much as possible. Your summary should be clear and easily understandable for the ChatGpt model providing a comprehensive and concise summary of the conversation." | |
if(self.token_str(str(input)+prompt)>self.max_tokens): | |
input = input[self.token_str(str(input))-self.max_tokens:] | |
while self.token_str(str(input)+prompt)>self.max_tokens: | |
input = input[self.decrease_step:] | |
prompt = prompt.replace("{conversation}", input) | |
self.reset(convo_id='conversationSummary') | |
response = self.ask(prompt,convo_id='conversationSummary')[0] | |
while self.token_str(str(response))>self.max_tokens: | |
response = response[:-self.decrease_step] | |
self.reset(convo_id='conversationSummary',system_prompt='Summariaze our diaglog') | |
self.conversation[convo_id] = [ | |
{"role": "system", "content": self.system_prompt}, | |
{"role": "user", "content": "Summariaze our diaglog"}, | |
{"role": 'assistant', "content": response}, | |
] | |
return self.conversation[convo_id] | |
def token_cost(self,convo_id: str = "default"): | |
return len(ENCODER.encode("\n".join([x["content"] for x in self.conversation[convo_id]]))) | |
def token_str(self,content:str): | |
return len(ENCODER.encode(content)) | |
def main(): | |
return | |