shortpingoo / calculate_cosine_similarity.py
waseoke's picture
Create calculate_cosine_similarity.py
0182b00 verified
raw
history blame
517 Bytes
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
def calculate_cosine_similarity(user_embedding, product_embeddings, product_ids, top_n=5):
user_embedding = user_embedding.reshape(1, -1)
product_embeddings = np.array(product_embeddings)
similarities = cosine_similarity(user_embedding, product_embeddings).flatten()
top_indices = similarities.argsort()[::-1][:top_n]
recommendations = [(product_ids[i], similarities[i]) for i in top_indices]
return recommendations