Spaces:
Sleeping
Sleeping
from sklearn.metrics.pairwise import cosine_similarity | |
import numpy as np | |
def calculate_cosine_similarity(user_embedding, product_embeddings, product_ids, top_n=5): | |
user_embedding = user_embedding.reshape(1, -1) | |
product_embeddings = np.array(product_embeddings) | |
similarities = cosine_similarity(user_embedding, product_embeddings).flatten() | |
top_indices = similarities.argsort()[::-1][:top_n] | |
recommendations = [(product_ids[i], similarities[i]) for i in top_indices] | |
return recommendations | |