File size: 9,401 Bytes
5b56cf9
 
 
 
 
 
 
 
11f7241
5b56cf9
 
 
 
 
60ea0fc
ed18335
 
5b56cf9
60ea0fc
11f7241
5b56cf9
11f7241
 
5b56cf9
11f7241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60ea0fc
11f7241
 
 
5b56cf9
 
 
 
 
 
 
53c80cf
5b56cf9
 
 
 
 
bd48976
ed18335
 
60ea0fc
c80bca9
ee1f9b2
5b56cf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f91844f
 
 
 
 
 
60ea0fc
f91844f
60ea0fc
f91844f
 
60ea0fc
f91844f
 
60ea0fc
 
5b56cf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import gradio as gr
import pandas as pd
import json
from constants import BANNER, INTRODUCTION_TEXT, CITATION_TEXT, METRICS_TAB_TEXT, DIR_OUTPUT_REQUESTS
from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub
from utils_display import AutoEvalColumn, fields, make_clickable_model, styled_error, styled_message
from datetime import datetime, timezone

LAST_UPDATED = "Sep 9th 2023"

column_names = {
    "MODEL": "Model",
    "Avg. WER": "Average WER ⬇️",    
    "RTF": "RTF (1e-3) ⬇️",
    "Common Voice WER": "Common Voice WER ⬇️",
    "D_AVG_CV_WER": "Delta AVG-CV WER",
}

# Skipping testings just uing the numbers computed in the original space for my sanity sake
# eval_queue_repo, requested_models, csv_results = load_all_info_from_dataset_hub()

# if not csv_results.exists():
#     raise Exception(f"CSV file {csv_results} does not exist locally")
    
# # Get csv with data and parse columns
# original_df = pd.read_csv(csv_results)

data = [
    ["nvidia/stt_en_fastconformer_transducer_xlarge",
     12.3, 8.06, 7.26],
    
    ["nvidia/stt_en_fastconformer_transducer_xxlarge",
     14.4, 8.07, 6.07],
    
    ["openai/whisper-large-v2",
     12.7, 8.16, 10.12],
    
    ["nvidia/stt_en_fastconformer_ctc_xxlarge",
     5, 8.34, 8.31],
    
    ["nvidia/stt_en_conformer_ctc_large",
     7.5, 8.39, 9.1],
    
    ["openai/whisper-medium.en",
     10.7, 8.5, 11.96],
    
    ["nvidia/stt_en_fastconformer_ctc_xlarge",
     2.9, 8.52, 7.51],
    
    ["nvidia/stt_en_fastconformer_ctc_large",
     1.8, 8.9, 8.56],
    
    ["nvidia/stt_en_fastconformer_transducer_large",
     10.4, 8.94, 8.04],
    
    ["openai/whisper-large",
     12.7, 9.2, 10.92],
    
    ["nvidia/stt_en_conformer_transducer_large",
     21.8, 9.27, 7.36],
    
    ["openai/whisper-small.en",
     8.3, 9.34, 15.13],
    
    ["nvidia/stt_en_conformer_transducer_small",
     17.7, 10.81, 14.35],
    
    ["openai/whisper-base.en",
     7.2, 11.67, 21.77],
    
    ["nvidia/stt_en_conformer_ctc_small",
     3.2, 11.77, 16.59],
    
    ["patrickvonplaten/wav2vec2-large-960h-lv60-self-4-gram",
     20.1, 13.65, 20.05],
    
    ["facebook/wav2vec2-large-960h-lv60-self",
     2.5, 14.47, 22.15],
    
    ["openai/whisper-tiny.en",
     9.1, 14.96, 31.09],
    
    ["patrickvonplaten/hubert-xlarge-ls960-ft-4-gram",
     24.5, 15.11, 19.16],
    
    ["speechbrain/asr-wav2vec2-librispeech",
     2.6, 15.61, 23.71],
    
    ["facebook/hubert-xlarge-ls960-ft",
     6.3, 15.81, 22.05],
    
    ["facebook/mms-1b-all",
     5.9, 15.85, 21.23],
    
    ["facebook/hubert-large-ls960-ft",
     2.6, 15.93, 23.12],
    
    ["facebook/wav2vec2-large-robust-ft-libri-960h",
     2.7, 16.07, 22.57],
    
    ["facebook/wav2vec2-conformer-rel-pos-large-960h-ft",
     5.2, 17, 23.01],
    
    ["facebook/wav2vec2-conformer-rope-large-960h-ft",
     7.8, 17.06, 23.08],
    
    ["facebook/wav2vec2-large-960h",
     1.8, 21.76, 34.01],
    
    ["facebook/wav2vec2-base-960h",
     1.2, 26.41, 41.75]
]

columns = [
    "Model", "RTF (1e-3) ⬇️", "Average WER ⬇️", "Common Voice WER ⬇️"
]

original_df = pd.DataFrame(data, columns=columns)

# Formats the columns
def formatter(x):
    x = round(x, 2)
    return x

for col in original_df.columns:
    if col.lower() == "model":
        original_df[col] = original_df[col].apply(lambda x: x.replace(x, make_clickable_model(x)))
    else:
        original_df[col] = original_df[col].apply(formatter) # For numerical values
 
original_df.rename(columns=column_names, inplace=True)
original_df.sort_values(by='Common Voice WER', inplace=True)

# Compute delta between average WER and CV WER
original_df['Detla Avg. C.V. WER'] = original_df['Average WER ⬇️'] - original_df['Common Voice WER ⬇️']
original_df['Detla Avg. C.V. WER'] = pd.to_numeric(original_df['Detla Avg. C.V. WER'], errors='coerce') # Convert to numerical data type
original_df['Detla Avg. C.V. WER'] = original_df[col].apply(lambda x: round(x, 2) if not pd.isna(x) else x) # Round and handle NaN values

COLS = [c.name for c in fields(AutoEvalColumn)]
TYPES = [c.type for c in fields(AutoEvalColumn)]


def request_model(model_text, chbcoco2017):
    
    # Determine the selected checkboxes
    dataset_selection = []
    if chbcoco2017:
        dataset_selection.append("ESB Datasets tests only")

    if len(dataset_selection) == 0:
        return styled_error("You need to select at least one dataset")
        
    base_model_on_hub, error_msg = is_model_on_hub(model_text)

    if not base_model_on_hub:
        return styled_error(f"Base model '{model_text}' {error_msg}")
    
    # Construct the output dictionary
    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
    required_datasets = ', '.join(dataset_selection)
    eval_entry = {
        "date": current_time,
        "model": model_text,
        "datasets_selected": required_datasets
    }
    
    # Prepare file path 
    DIR_OUTPUT_REQUESTS.mkdir(parents=True, exist_ok=True)
    
    fn_datasets = '@ '.join(dataset_selection)
    filename = model_text.replace("/","@") + "@@" + fn_datasets 
    if filename in requested_models:
        return styled_error(f"A request for this model '{model_text}' and dataset(s) was already made.")
    try:
        filename_ext = filename + ".txt"
        out_filepath = DIR_OUTPUT_REQUESTS / filename_ext

        # Write the results to a text file
        with open(out_filepath, "w") as f:
            f.write(json.dumps(eval_entry))
            
        upload_file(filename, out_filepath)
        
        # Include file in the list of uploaded files
        requested_models.append(filename)
        
        # Remove the local file
        out_filepath.unlink()

        return styled_message("🤗 Your request has been submitted and will be evaluated soon!</p>")
    except Exception as e:
        return styled_error(f"Error submitting request!")

with gr.Blocks() as demo:
    gr.HTML(BANNER, elem_id="banner")
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
    
    CUSTOM_MESSAGE = """Legend:
This space is a fork of the original [hf-audio/open_asr_leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard). It aims to demonstrate how the CommonVoice Test Set provides a relatively accurate approximation of the average WER/CER (Word Error Rate/Character Error Rate) at a significantly lower computational cost.

Why is this useful?
This space is invaluable because it offers a standardized test set for most languages, enabling us to programmatically select a reasonably effective model for any language supported by CommonVoice.

Model, RTF (1e-3) ⬇️, and Average WER ⬇️ were sourced from [hf-audio/open_asr_leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard) using the version from September 7, 2023.

Results
The CommonVoice Test provides a Word Error Rate (WER) within a 20-point margin of the average WER.

While not perfect, this indicates that CommonVoice can be a useful tool for quickly identifying a suitable ASR model for a wide range of languages in a programmatic manner. However, it's important to note that it is not sufficient as the sole criterion for choosing the most appropriate architecture. Further considerations may be needed depending on the specific requirements of your ASR application.
"""
    gr.Markdown(CUSTOM_MESSAGE, elem_classes="markdown-text")
    

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏅 Leaderboard", elem_id="od-benchmark-tab-table", id=0):
            leaderboard_table = gr.components.Dataframe(
                value=original_df,
                datatype=TYPES,
                max_rows=None,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
                )

        with gr.TabItem("📈 Metrics", elem_id="od-benchmark-tab-table", id=1):
            gr.Markdown(METRICS_TAB_TEXT, elem_classes="markdown-text")

        with gr.TabItem("✉️✨ Request a model here!", elem_id="od-benchmark-tab-table", id=2):
            with gr.Column():
                gr.Markdown("# ✉️✨ Request results for a new model here!", elem_classes="markdown-text")
            with gr.Column():
                gr.Markdown("Select a dataset:", elem_classes="markdown-text")
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)")
                    chb_coco2017 = gr.Checkbox(label="COCO validation 2017 dataset", visible=False, value=True, interactive=False)
                with gr.Column():
                    mdw_submission_result = gr.Markdown()
                    btn_submitt = gr.Button(value="🚀 Request")
                    btn_submitt.click(request_model, 
                                      [model_name_textbox, chb_coco2017], 
                                      mdw_submission_result)

    gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text")
    
    with gr.Row():
        with gr.Accordion("📙 Citation", open=False):
            gr.Textbox(
                value=CITATION_TEXT, lines=7,
                label="Copy the BibTeX snippet to cite this source",
                elem_id="citation-button",
            ).style(show_copy_button=True)

demo.launch()