File size: 1,912 Bytes
e217e10
 
 
 
 
 
 
 
 
 
 
a4c32a6
e217e10
 
 
2524332
e217e10
 
 
 
 
 
 
 
2524332
e217e10
1bcc83a
3d3d421
c7fcf9a
 
 
 
 
e217e10
c7fcf9a
 
 
 
1bcc83a
c7fcf9a
 
5bc6fbe
c7fcf9a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForTextToWaveform
def install_model(namemodel,tokenn,namemodelonxx):
     
    model = AutoModelForTextToWaveform.from_pretrained(namemodel,token=tokenn)
    namemodelonxxx=convert_to_onnx(model,namemodelonxx)
    return namemodelonxxx
def convert_to_onnx(model,namemodelonxx):
      vocab_size = model.text_encoder.embed_tokens.weight.size(0)
      example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long)
      x=f"wasmdashai/{namemodelonxx}.onnx"
      torch.onnx.export(
          model,  # The model to be exported
          example_input,  # Example input for the model
          x,  # The filename for the exported ONNX model
          opset_version=11,  # Use an appropriate ONNX opset version
          input_names=['input'],  # Name of the input layer
          output_names=['output'],  # Name of the output layer
          dynamic_axes={
              'input': {0: 'batch_size', 1: 'sequence_length'},  # Dynamic axes for variable-length inputs
              'output': {0: 'batch_size'}
          }
      )
      return x
with gr.Blocks() as demo:
                         
                        with gr.Row():
                                 with gr.Column():
                                        text_n_model=gr.Textbox(label="name model")
                                        text_n_token=gr.Textbox(label="token")
                                        text_n_onxx=gr.Textbox(label="name model onxx")
                                 with gr.Column():

                                        btn=gr.Button("convert")
                                        label=gr.Label("return  name model onxx")
                                        btn.click(install_model,[text_n_model,text_n_token,text_n_onxx],[label])
                               
                         


demo.launch()