File size: 5,492 Bytes
4de59fa
 
 
636ff5e
4de59fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
import torch.onnx
import onnx
from VitsModelSplit.vits_model_only_d import  Vits_models_only_decoder
from VitsModelSplit.vits_model import VitsModel
import gradio as gr

class OnnxModelConverter:
    def __init__(self):
        self.model = None
    def download_file(self,file_path):
        ff= gr.File(value=file_path, visible=True)
        file_url = ff.value['url']
        return file_url

    def convert(self, model_name, token, onnx_filename, conversion_type):
        """
        Main function to handle different types of model conversions.

        Args:
            model_name (str): Name of the model to convert.
            token (str): Access token for loading the model.
            onnx_filename (str): Desired filename for the ONNX output.
            conversion_type (str): Type of conversion ('decoder', 'only_decoder', or 'full_model').

        Returns:
            str: The path to the generated ONNX file.
        """
        if conversion_type == "decoder":
            return self.convert_decoder(model_name, token, onnx_filename)
        elif conversion_type == "only_decoder":
            return self.convert_only_decoder(model_name, token, onnx_filename)
        elif conversion_type == "full_model":
            return self.convert_full_model(model_name, token, onnx_filename)
        else:
            raise ValueError("Invalid conversion type. Choose from 'decoder', 'only_decoder', or 'full_model'.")

    def convert_decoder(self, model_name, token, onnx_filename):
        """
        Converts only the decoder part of the Vits model to ONNX format.

        Args:
            model_name (str): Name of the model to convert.
            token (str): Access token for loading the model.
            onnx_filename (str): Desired filename for the ONNX output.

        Returns:
            str: The path to the generated ONNX file.
        """
        model = VitsModel.from_pretrained(model_name, token=token)
        onnx_file = f"/tmp/{onnx_filename}.onnx"
        vocab_size = model.text_encoder.embed_tokens.weight.size(0)
        example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long)

        torch.onnx.export(
            model,
            example_input,
            onnx_file,
            opset_version=11,
            input_names=['input'],
            output_names=['output'],
            dynamic_axes={'input': {0: 'batch_size', 1: 'sequence_length'}, 'output': {0: 'batch_size'}}
        )

        return onnx_file


    def convert_only_decoder(self, model_name, token, onnx_filename):
        """
        Converts only the decoder part of the Vits model to ONNX format.

        Args:
            model_name (str): Name of the model to convert.
            token (str): Access token for loading the model.
            onnx_filename (str): Desired filename for the ONNX output.

        Returns:
            str: The path to the generated ONNX file.
        """
        model = Vits_models_only_decoder.from_pretrained(model_name, token=token)
        onnx_file = f"/tmp/{onnx_filename}.onnx"

        vocab_size = model.text_encoder.embed_tokens.weight.size(0)
        example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long)

        torch.onnx.export(
            model,
            example_input,
            onnx_file,
            opset_version=11,
            input_names=['input'],
            output_names=['output'],
            dynamic_axes={'input': {0: 'batch_size', 1: 'sequence_length'}, 'output': {0: 'batch_size'}}
        )

        return onnx_file

    def convert_full_model(self, model_name, token, onnx_filename):
        """
        Converts the full Vits model (including encoder and decoder) to ONNX format.

        Args:
            model_name (str): Name of the model to convert.
            token (str): Access token for loading the model.
            onnx_filename (str): Desired filename for the ONNX output.

        Returns:
            str: The path to the generated ONNX file.
        """
        model = VitsModel.from_pretrained(model_name, token=token)
        onnx_file = f"/tmp/{onnx_filename}.onnx"

        vocab_size = model.text_encoder.embed_tokens.weight.size(0)
        example_input = torch.randint(0, vocab_size, (1, 100), dtype=torch.long)

        torch.onnx.export(
            model,
            example_input,
            onnx_file,
            opset_version=11,
            input_names=['input'],
            output_names=['output'],
            dynamic_axes={'input': {0: 'batch_size', 1: 'sequence_length'}, 'output': {0: 'batch_size'}}
        )

        return onnx_file
    def starrt(self):
        with gr.Blocks() as demo:
            with gr.Row():
                  with gr.Column():
                    text_n_model=gr.Textbox(label="name model")
                    text_n_token=gr.Textbox(label="token")
                    text_n_onxx=gr.Textbox(label="name model onxx")
                    choice = gr.Dropdown(choices=["decoder", "only_decoder", "full_model"], label="My Dropdown")

                  with gr.Column():

                    btn=gr.Button("convert")
                    label=gr.Label("return  name model onxx")
                    btn.click(self.convert,[text_n_model,text_n_token,text_n_onxx,choice],[outputs=gr.File(label="Download File")])
                    #choice.change(fn=function_change, inputs=choice, outputs=label)
        return demo
c=OnnxModelConverter()
cc=c.starrt()
cc.launch(share=True)