Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -407,8 +407,8 @@ class TrinerModelVITS:
|
|
407 |
self.len_dataset=len(self.DataSets['train'])
|
408 |
self.load_model()
|
409 |
self.init_wandb()
|
410 |
-
self.training_args=load_training_args(self.path_training_args)
|
411 |
-
training_args= self.training_args
|
412 |
scaler = GradScaler(enabled=True)
|
413 |
for disc in self.model.discriminator.discriminators:
|
414 |
disc.apply_weight_norm()
|
@@ -424,23 +424,23 @@ class TrinerModelVITS:
|
|
424 |
|
425 |
optimizer = torch.optim.AdamW(
|
426 |
self.model.parameters(),
|
427 |
-
|
428 |
-
betas=[
|
429 |
-
|
430 |
)
|
431 |
|
432 |
# Hack to be able to train on multiple device
|
433 |
disc_optimizer = torch.optim.AdamW(
|
434 |
discriminator.parameters(),
|
435 |
-
|
436 |
-
betas=[
|
437 |
-
|
438 |
)
|
439 |
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
|
440 |
-
optimizer,
|
441 |
)
|
442 |
disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
|
443 |
-
disc_optimizer,
|
444 |
)
|
445 |
self.models=(self.model,discriminator)
|
446 |
self.optimizers=(optimizer,disc_optimizer,scaler)
|
|
|
407 |
self.len_dataset=len(self.DataSets['train'])
|
408 |
self.load_model()
|
409 |
self.init_wandb()
|
410 |
+
# self.training_args=load_training_args(self.path_training_args)
|
411 |
+
# training_args= self.training_args
|
412 |
scaler = GradScaler(enabled=True)
|
413 |
for disc in self.model.discriminator.discriminators:
|
414 |
disc.apply_weight_norm()
|
|
|
424 |
|
425 |
optimizer = torch.optim.AdamW(
|
426 |
self.model.parameters(),
|
427 |
+
2e-4,
|
428 |
+
betas=[0.8, 0.99],
|
429 |
+
# eps=training_args.adam_epsilon,
|
430 |
)
|
431 |
|
432 |
# Hack to be able to train on multiple device
|
433 |
disc_optimizer = torch.optim.AdamW(
|
434 |
discriminator.parameters(),
|
435 |
+
2e-4,
|
436 |
+
betas=[0.8, 0.99],
|
437 |
+
# eps=training_args.adam_epsilon,
|
438 |
)
|
439 |
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
|
440 |
+
optimizer, last_epoch=-1
|
441 |
)
|
442 |
disc_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
|
443 |
+
disc_optimizer, last_epoch=-1
|
444 |
)
|
445 |
self.models=(self.model,discriminator)
|
446 |
self.optimizers=(optimizer,disc_optimizer,scaler)
|