File size: 9,719 Bytes
9c4bf4f
 
26ff9be
9c4bf4f
 
26ff9be
9c4bf4f
26ff9be
 
9c4bf4f
26ff9be
dce3b4a
 
26ff9be
9c4bf4f
 
 
 
 
 
 
 
 
 
5f17314
9c4bf4f
 
 
 
b0bb61b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c4bf4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0bb61b
 
9c4bf4f
b0bb61b
 
 
 
 
 
9c4bf4f
 
 
 
 
4835adc
 
9c4bf4f
 
 
 
4835adc
 
26ff9be
 
 
 
 
a359a1a
26ff9be
1ce0f2e
26ff9be
 
 
 
cf86894
53f3bc6
26ff9be
 
 
 
 
a359a1a
26ff9be
 
5808bd1
26ff9be
bf2199e
26ff9be
 
 
 
 
d86b643
 
 
cf86894
d86b643
 
 
9c4bf4f
7758f6a
4835adc
 
 
bf2199e
a359a1a
9c4bf4f
7758f6a
26ff9be
 
 
 
 
 
 
 
 
 
 
 
7be5ca9
26ff9be
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import gradio as gr
import os
from transformers import AutoTokenizer,VitsModel

import google.generativeai as genai
import torch

api_key =os.environ.get("id_gmkey")
token=os.environ.get("key_")
genai.configure(api_key=api_key)
tokenizer = AutoTokenizer.from_pretrained("asg2024/vits-ar-sa-huba",token=token)
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_vits=VitsModel.from_pretrained("asg2024/vits-ar-sa-huba",token=token)#.to(device)


generation_config = {
  "temperature": 1,
  "top_p": 0.95,
  "top_k": 64,
  "max_output_tokens": 8192,
  "response_mime_type": "text/plain",
}

model = genai.GenerativeModel(
  model_name="gemini-1.5-pro",
  generation_config=generation_config,
  # safety_settings = Adjust safety settings
  # See https://ai.google.dev/gemini-api/docs/safety-settings
)
import torch
from typing import Any, Callable, Optional, Tuple, Union,Iterator
import numpy as np
import torch.nn as nn # Import the missing module
def _inference_forward_stream(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        speaker_embeddings: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        padding_mask: Optional[torch.Tensor] = None,
        chunk_size: int = 32,  # Chunk size for streaming output
    ) -> Iterator[torch.Tensor]:
        """Generates speech waveforms in a streaming fashion."""
        if attention_mask is not None:
            padding_mask = attention_mask.unsqueeze(-1).float()
        else:
            padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float()



        text_encoder_output = self.text_encoder(
            input_ids=input_ids,
            padding_mask=padding_mask,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
        hidden_states = hidden_states.transpose(1, 2)
        input_padding_mask = padding_mask.transpose(1, 2)

        prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
        prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances

        if self.config.use_stochastic_duration_prediction:
            log_duration = self.duration_predictor(
                hidden_states,
                input_padding_mask,
                speaker_embeddings,
                reverse=True,
                noise_scale=self.noise_scale_duration,
            )
        else:
            log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)

        length_scale = 1.0 / self.speaking_rate
        duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
        predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()


        # Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
        indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
        output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
        output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)

        # Reconstruct an attention tensor of shape (batch, 1, out_length, in_length)
        attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
        batch_size, _, output_length, input_length = attn_mask.shape
        cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
        indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
        valid_indices = indices.unsqueeze(0) < cum_duration
        valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
        padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
        attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask

        # Expand prior distribution
        prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2)
        prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2)

        prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
        latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)

        spectrogram = latents * output_padding_mask

        for i in range(0, spectrogram.size(-1), chunk_size):
            with torch.no_grad():
                wav=self.decoder(spectrogram[:,:,i : i + chunk_size] ,speaker_embeddings)
            yield wav.squeeze().cpu().numpy()


def create_chat_session():
    chat_session = model.start_chat(
                  history=[
                    {
                      "role": "user",
                      "parts": [
                        "السلام عليكم اريد منك ان ترد على اسئلتي  دائما باللهجة السعودية النجدية  \n\n",
                      ],
                    },
                    {
                      "role": "model",
                      "parts": [
                        "هلا والله، إسأل ما في خاطرك وأنا حاضر أساعدك، بس بشرط واحد، أسئلتك تكون واضحة عشان أفهم عليك عدل وأعطيك الجواب الزين. قل وش تبي وأنا حاضر! \n",
                      ],
                    },
                    {
                      "role": "user",
                      "parts": [
                        "كيف حالك اخبارك\n",
                      ],
                    },
                    {
                      "role": "model",
                      "parts": [
                        "هلا والله وغلا، أنا طيب وبخير الحمد لله،  انت كيفك؟ عساك طيب؟ \n \n وش عندك أخبار؟ عسى كلها زينة.  \n",
                      ],
                    },
                    {
                      "role": "user",
                      "parts": [
                        "اريد ايضا ان تكون اجابتك مختصره على سبيل المثال ااكثر اجابة سطرين\n",
                      ],
                    },
                    {
                      "role": "model",
                      "parts": [
                        "خلاص، فهمتك. من عيوني، أسئلتك من اليوم وطالع أجوبتها ما تتعدى سطرين.  \n \n إسأل وشف! \n",
                      ],
                    },
                  ]
                )
    return chat_session

AI=create_chat_session()
def generate_audio(text,speaker_id=None):
    inputs = tokenizer(text, return_tensors="pt")#.input_ids

    speaker_embeddings = None
    
    #torch.cuda.empty_cache()
    with torch.no_grad():
        for chunk in _inference_forward_stream(model_vits,input_ids=inputs.input_ids,attention_mask=inputs.attention_mask,speaker_embeddings= speaker_embeddings,chunk_size=256):
            yield  16000,chunk#.squeeze().cpu().numpy()#.astype(np.int16).tobytes() 


def   get_answer_ai(text):
      global AI
      try:
          response = AI.send_message(text,stream=True)
          return response

          
      except :
          AI=create_chat_session()
          response = AI.send_message(text,stream=True)
          return response

def   modelspeech(text):
     with torch.no_grad():
          inputs = tokenizer(text, return_tensors="pt")#.cuda()

          wav = model_vits(input_ids=inputs["input_ids"]).waveform.cpu().numpy().reshape(-1)
          # display(Audio(wav, rate=model.config.sampling_rate))
          return  model_vits.config.sampling_rate,wav#remove_noise_nr(wav)

import re
def clean_text(text):
  # Remove symbols and extra spaces
  cleaned_text = re.sub(r'[^\w\s]', ' ', text)  # Remove symbols
  cleaned_text = re.sub(r'\s+', ' ', cleaned_text)  # Normalize spaces
  return cleaned_text.strip()  # Remove leading/trailing spaces


def text_to_speech(text):
    
    response = dash(text)
    pad_text=''
    k=0
    for chunk in response:
       
       pad_text+=str(clean_text(chunk))
       
       if pad_text!='' and len(pad_text)>10:
           out=pad_text
           pad_text=''
           k+=1
           yield modelspeech(out)
           # for   stream_wav in generate_audio(out):
           #      yield stream_wav
    if pad_text!='':
        yield modelspeech(pad_text)
       # for   stream_wav in generate_audio(pad_text):
       #          yield stream_wav
def dash(text):
    
    response=get_answer_ai(text)
    for chunk in  response:
        yield chunk.text




# demo = gr.Interface(fn=dash, inputs=["text"], outputs=['text'])
# demo.launch()

with gr.Blocks() as demo:
    with gr.Tab("AI Text  "):
        gr.Markdown("# Text to Speech")
        text_input = gr.Textbox(label="Enter Text")
        text_out = gr.Textbox()
        text_input.submit(dash, text_input, text_out)
    with gr.Tab("AI Speech"):
        gr.Markdown("# Text to Speech")
        text_input2 = gr.Textbox(label="Enter Text")
        audio_output = gr.Audio(streaming=True,autoplay=True)
        text_input2.submit(text_to_speech, text_input2, audio_output)
         

demo.launch(show_error=True)