Spaces:
Sleeping
Sleeping
File size: 10,323 Bytes
1b38289 11f2c2b 7499cbd 1b38289 d5cd191 1b38289 11f2c2b 1b38289 11f2c2b 1b38289 dafc7b5 1b38289 11f2c2b 1b38289 7499cbd 1b38289 7499cbd 1b38289 d5cd191 1b38289 d5cd191 1b38289 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
'''
Author: Wxl
Date: 2024-03-11 13:58:58
LastEditors: wuxulong19950206 [email protected]
LastEditTime: 2024-03-11 22:26:59
FilePath: \apeech_rec\app.py
Description:
Copyright (c) 2024 by ${git_name} email: ${git_email}, All Rights Reserved.
'''
# References:
# https://gradio.app/docs/#dropdown
import logging
import os
import wave
import tempfile
import time
import urllib.request
import uuid
from datetime import datetime
import gradio as gr
from examples import examples
from deploy_model import decode, get_pretrained_model,language_to_models
languages = list(language_to_models.keys())
def convert_to_wav(in_filename: str) -> str:
"""Convert the input audio file to a wave file"""
out_filename = str(uuid.uuid4())
out_filename = f"{in_filename}"
logging.info(f"Converting '{in_filename}' to '{out_filename}'")
_ = os.system(f"ffmpeg -hide_banner -i '{in_filename}' -ar 16000 '{out_filename}'")
return out_filename
def build_html_output(s: str, style: str = "result_item_success"):
return f"""
<div class='result'>
<div class='result_item {style}'>
{s}
</div>
</div>
"""
def process_url(
language: str,
repo_id: str,
decoding_method: str,
num_active_paths: int,
url: str,
):
logging.info(f"Processing URL: {url}")
with tempfile.NamedTemporaryFile() as f:
try:
urllib.request.urlretrieve(url, f.name)
return process(
in_filename=f.name,
language=language,
repo_id=repo_id,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
except Exception as e:
logging.info(str(e))
return "", build_html_output(str(e), "result_item_error")
def process_uploaded_file(
language: str,
repo_id: str,
decoding_method: str,
num_active_paths: int,
in_filename: str,
):
if in_filename is None or in_filename == "":
return "", build_html_output(
"Please first upload a file and then click "
'the button "submit for recognition"',
"result_item_error",
)
logging.info(f"Processing uploaded file: {in_filename}")
# try:
return process(
in_filename=in_filename,
language=language,
repo_id=repo_id,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
# except Exception as e:
# logging.info(str(e))
# return "", build_html_output(str(e), "result_item_error")
def process_microphone(
language: str,
repo_id: str,
decoding_method: str,
num_active_paths: int,
in_filename: str,
):
if in_filename is None or in_filename == "":
return "", build_html_output(
"Please first click 'Record from microphone', speak, "
"click 'Stop recording', and then "
"click the button 'submit for recognition'",
"result_item_error",
)
logging.info(f"Processing microphone: {in_filename}")
try:
return process(
in_filename=in_filename,
language=language,
repo_id=repo_id,
decoding_method=decoding_method,
num_active_paths=num_active_paths,
)
except Exception as e:
logging.info(str(e))
return "", build_html_output(str(e), "result_item_error")
def process(
language: str,
repo_id: str,
decoding_method: str,
num_active_paths: int,
in_filename: str,
):
logging.info(f"language: {language}")
logging.info(f"repo_id: {repo_id}")
logging.info(f"decoding_method: {decoding_method}")
logging.info(f"num_active_paths: {num_active_paths}")
logging.info(f"in_filename: {in_filename}")
filename = convert_to_wav(in_filename)
now = datetime.now()
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
logging.info(f"Started at {date_time}")
start = time.time()
recognizer = get_pretrained_model()
text = decode(recognizer, filename)
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
end = time.time()
wav = wave.open(filename,"rb") # 打开一个wav格式的声音文件流
num_frame = wav.getnframes() # 获取帧数
num_channel=wav.getnchannels() # 获取声道数
framerate=wav.getframerate() # 获取帧速率
num_sample_width=wav.getsampwidth() # 获取实例的比特宽度,即每一帧的字节数
str_data = wav.readframes(num_frame) # 读取全部的帧
wav.close() # 关闭流
duration = num_frame / framerate
rtf = (end - start) / duration
logging.info(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s")
info = f"""
Wave duration : {duration: .3f} s <br/>
Processing time: {end - start: .3f} s <br/>
RTF: {end - start: .3f}/{duration: .3f} = {rtf:.3f} <br/>
"""
if rtf > 1:
info += (
"<br/>We are loading the model for the first run. "
"Please run again to measure the real RTF.<br/>"
)
logging.info(info)
logging.info(f"\nrepo_id: {repo_id}\nhyp: {text}")
return text, build_html_output(info)
title = "#汉语语音识别"
description = """
汉语普通话语音识别
"""
# css style is copied from
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113
css = """
.result {display:flex;flex-direction:column}
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
.result_item_error {background-color:#ff7070;color:white;align-self:start}
"""
def update_model_dropdown(language: str):
if language in language_to_models:
choices = language_to_models[language]
return gr.Dropdown(
choices=choices,
value=choices[0],
interactive=True,
)
raise ValueError(f"Unsupported language: {language}")
demo = gr.Blocks(css=css)
with demo:
gr.Markdown(title)
language_choices = list(language_to_models.keys())
language_radio = gr.Radio(
label="Language",
choices=language_choices,
value=language_choices[0],
)
model_dropdown = gr.Dropdown(
choices=language_to_models[language_choices[0]],
label="Select a model",
value=language_to_models[language_choices[0]][0],
)
language_radio.change(
update_model_dropdown,
inputs=language_radio,
outputs=model_dropdown,
)
decoding_method_radio = gr.Radio(
label="Decoding method",
choices=["greedy_search", "modified_beam_search"],
value="greedy_search",
)
num_active_paths_slider = gr.Slider(
minimum=1,
value=4,
step=1,
label="Number of active paths for modified_beam_search",
)
with gr.Tabs():
with gr.TabItem("Upload from disk"):
uploaded_file = gr.Audio(
sources=["upload"], # Choose between "microphone", "upload"
type="filepath",
label="Upload from disk",
)
upload_button = gr.Button("Submit for recognition")
uploaded_output = gr.Textbox(label="Recognized speech from uploaded file")
uploaded_html_info = gr.HTML(label="Info")
gr.Examples(
examples=examples,
inputs=[
language_radio,
model_dropdown,
decoding_method_radio,
num_active_paths_slider,
uploaded_file,
],
outputs=[uploaded_output, uploaded_html_info],
fn=process_uploaded_file,
)
with gr.TabItem("Record from microphone"):
microphone = gr.Audio(
sources=["microphone"], # Choose between "microphone", "upload"
type="filepath",
label="Record from microphone",
)
record_button = gr.Button("Submit for recognition")
recorded_output = gr.Textbox(label="Recognized speech from recordings")
recorded_html_info = gr.HTML(label="Info")
gr.Examples(
examples=examples,
inputs=[
language_radio,
model_dropdown,
decoding_method_radio,
num_active_paths_slider,
microphone,
],
outputs=[recorded_output, recorded_html_info],
fn=process_microphone,
)
with gr.TabItem("From URL"):
url_textbox = gr.Textbox(
max_lines=1,
placeholder="URL to an audio file",
label="URL",
interactive=True,
)
url_button = gr.Button("Submit for recognition")
url_output = gr.Textbox(label="Recognized speech from URL")
url_html_info = gr.HTML(label="Info")
upload_button.click(
process_uploaded_file,
inputs=[
language_radio,
model_dropdown,
decoding_method_radio,
num_active_paths_slider,
uploaded_file,
],
outputs=[uploaded_output, uploaded_html_info],
)
record_button.click(
process_microphone,
inputs=[
language_radio,
model_dropdown,
decoding_method_radio,
num_active_paths_slider,
microphone,
],
outputs=[recorded_output, recorded_html_info],
)
url_button.click(
process_url,
inputs=[
language_radio,
model_dropdown,
decoding_method_radio,
num_active_paths_slider,
url_textbox,
],
outputs=[url_output, url_html_info],
)
gr.Markdown(description)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
demo.launch()
|