wuxulong19950206
First model version
14d1720
import os
from typing import List, Union
import numpy as np
import torch
from torch import Tensor
from torch.utils.data import DataLoader, Dataset
from mtts.utils.logging import get_logger
logger = get_logger(__file__)
def pad_1D(inputs, PAD=0):
def pad_data(x, length, PAD):
x_padded = np.pad(x, (0, length - x.shape[0]), mode='constant', constant_values=PAD)
return x_padded
max_len = max((len(x) for x in inputs))
padded = np.stack([pad_data(x, max_len, PAD) for x in inputs])
return padded
def pad_2D(inputs, maxlen=None):
def pad(x, max_len):
PAD = 0
if np.shape(x)[0] > max_len:
raise ValueError("not max_len")
s = np.shape(x)[1]
x_padded = np.pad(x, (0, max_len - np.shape(x)[0]), mode='constant', constant_values=PAD)
return x_padded[:, :s]
if maxlen:
output = np.stack([pad(x, maxlen) for x in inputs])
else:
max_len = max(np.shape(x)[0] for x in inputs)
output = np.stack([pad(x, max_len) for x in inputs])
return output
class Tokenizer:
def __init__(self, vocab_file):
if vocab_file is None:
self.vocab = None
else:
self.vocab = open(vocab_file).read().split('\n')
self.v2i = {c: i for i, c in enumerate(self.vocab)}
def tokenize(self, text: Union[str, List]) -> Tensor:
if self.vocab is None: # direct mapping
if isinstance(text, str):
tokens = [int(t) for t in text.split()]
else:
tokens = [int(t) for t in text]
else:
if isinstance(text, str):
tokens = [self.v2i[t] for t in text.split()]
else:
tokens = [self.v2i[t] for t in text]
return torch.tensor(tokens)
def read_scp(scp_file):
with open(scp_file, 'rt') as f:
lines = f.read().split('\n')
name2value = {line.split()[0]: line.split()[1:] for line in lines if len(line) > 0}
return name2value
def check_duplicate(keys):
key_set0 = set(keys)
duplicate = None
if len(keys) != len(key_set0):
count = {k: 0 for k in key_set0}
for k in keys:
count[k] += 1
if count[k] >= 2:
duplicate = k
break
return duplicate
# raise ValueError('duplicated key detected: {duplicate}')
def check_keys(*args) -> None:
assert len(args) > 0
for kv in args:
dup = check_duplicate(list(kv.keys()))
if dup:
raise ValueError('duplicated key detected: {dup}:{kv[dup]}')
return None
class Dataset(Dataset):
def __init__(self, config, split='train'):
conf = config['dataset'][split]
self.name2wav = read_scp(conf['wav_scp'])
self.name2mel = read_scp(conf['mel_scp'])
self.name2dur = read_scp(conf['dur_scp'])
self.config = config
kv_to_check = [self.name2wav, self.name2mel, self.name2dur]
self.emb_scps = []
self.emb_tokenizers = []
for key in conf.keys():
if key.startswith('emb_type'):
name2emb = read_scp(conf[key]['scp'])
self.emb_scps += [name2emb]
emb_tok = Tokenizer(conf[key]['vocab'])
self.emb_tokenizers += [emb_tok]
logger.info('processed emb {}'.format(conf[key]['_name']))
kv_to_check += [name2emb]
check_keys(*kv_to_check)
self.names = [name for name in self.name2mel]
mel_size = {name: os.path.getsize(self.name2mel[name][0]) for name in self.names}
self.names = sorted(self.names, key=lambda x: mel_size[x])
logger.info(f'Shape of longest mel: {np.load(self.name2mel[self.names[-1]][0]).shape}')
logger.info(f'Shape of shortest mel: {np.load(self.name2mel[self.names[0]][0]).shape}')
def __len__(self):
return len(self.name2wav)
def __getitem__(self, idx):
key = self.names[idx]
token_tensor = []
for scp, tokenizer in zip(self.emb_scps, self.emb_tokenizers):
emb_text = scp[key]
tokens = tokenizer.tokenize(emb_text)
token_tensor.append(torch.unsqueeze(tokens, 0))
token_tensor = torch.cat(token_tensor, 0)
mel = np.load(self.name2mel[key][0])
if mel.shape[0] == self.config['fbank']['n_mels']:
mel = torch.tensor(mel.T)
else:
mel = torch.tensor(mel)
duration = torch.tensor([int(d) for d in self.name2dur[key]])
return token_tensor, duration, mel
def pad_1d_tensor(x, n):
if x.shape[0] >= n:
return x
x = torch.cat([x, torch.zeros((n - x.shape[0], ), dtype=x.dtype)], 0)
return x
def pad_2d_tensor(x, n):
if x.shape[1] >= n:
return x
x = torch.cat([x, torch.zeros((x.shape[0], n - x.shape[1]), dtype=x.dtype)], 1)
return x
def pad_mel(x, n):
if x.shape[0] >= n:
return x
x = torch.cat([x, torch.zeros((n - x.shape[0], x.shape[1]), dtype=x.dtype)], 0)
return x
def collate_fn(batch):
seq_len = []
mel_len = []
for (token_tensor, duration, mel) in batch:
seq_len.append(duration.shape[-1])
mel_len.append(mel.shape[0])
max_seq_len = max(seq_len)
max_mel_len = max(mel_len)
durations = []
token_tensors = []
mels = []
for token_tensor, duration, mel in batch:
duration = pad_1d_tensor(duration, max_seq_len)
durations.append(duration.unsqueeze_(0))
token_tensor = pad_2d_tensor(token_tensor, max_seq_len)
token_tensors.append(token_tensor.unsqueeze_(1))
mel = pad_mel(mel, max_mel_len)
mels.append(mel.unsqueeze_(0))
durations = torch.cat(durations, 0)
token_tensors = torch.cat(token_tensors, 1)
mels = torch.cat(mels, 0)
return token_tensors, durations, mels, torch.tensor(seq_len), torch.tensor(mel_len)
if __name__ == "__main__":
import yaml
with open('../../examples/aishell3/config.yaml') as f:
config = yaml.safe_load(f)
dataset = Dataset(config)
dataloader = DataLoader(dataset, batch_size=6, collate_fn=collate_fn)
batch = next(iter(dataloader))
print(type(batch[-1]))