Spaces:
Sleeping
Sleeping
from typing import Optional | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch import Tensor | |
def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None): | |
''' Sinusoid position encoding table ''' | |
def cal_angle(position, hid_idx): | |
return position / np.power(10000, 2 * (hid_idx // 2) / d_hid) | |
def get_posi_angle_vec(position): | |
return [cal_angle(position, hid_j) for hid_j in range(d_hid)] | |
sinusoid_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(n_position)]) | |
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i | |
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 | |
if padding_idx is not None: | |
# zero vector for padding dimension | |
sinusoid_table[padding_idx] = 0. | |
return torch.FloatTensor(sinusoid_table) | |
class ScaledDotProductAttention(nn.Module): | |
''' Scaled Dot-Product Attention ''' | |
def __init__(self, temperature): | |
super().__init__() | |
self.temperature = temperature | |
self.softmax = nn.Softmax(dim=2) | |
def forward(self, q, k, v, mask=None): | |
attn = torch.bmm(q, k.transpose(1, 2)) | |
attn = attn / self.temperature | |
if mask is not None: | |
attn = attn.masked_fill(mask, -np.inf) | |
attn = self.softmax(attn) | |
output = torch.bmm(attn, v) | |
return output, attn | |
class MultiHeadAttention(nn.Module): | |
''' Multi-Head Attention module ''' | |
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): | |
super().__init__() | |
self.n_head = n_head | |
self.d_k = d_k | |
self.d_v = d_v | |
self.w_qs = nn.Linear(d_model, n_head * d_k) | |
self.w_ks = nn.Linear(d_model, n_head * d_k) | |
self.w_vs = nn.Linear(d_model, n_head * d_v) | |
self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5)) | |
self.layer_norm = nn.LayerNorm(d_model) | |
self.fc = nn.Linear(n_head * d_v, d_model) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None): | |
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head | |
sz_b, len_q, _ = q.size() | |
sz_b, len_k, _ = k.size() | |
sz_b, len_v, _ = v.size() | |
residual = q | |
q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) | |
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) | |
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) | |
q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, d_k) # (n*b) x lq x dk | |
k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, d_k) # (n*b) x lk x dk | |
v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, d_v) # (n*b) x lv x dv | |
mask = mask.repeat(n_head, 1, 1).to(q.device) | |
output, attn = self.attention(q, k, v, mask=mask) | |
output = output.view(n_head, sz_b, len_q, d_v) | |
output = output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_q, -1) # b x lq x (n*dv) | |
output = self.dropout(self.fc(output)) | |
output = self.layer_norm(output + residual) | |
return output, attn | |
class PositionwiseFeedForward(nn.Module): | |
''' A two-feed-forward-layer module ''' | |
def __init__(self, d_in: int, d_hid: int, kernel_size: int = 9, dropout: float = 0.1): | |
super().__init__() | |
# Use Conv1D | |
# position-wise | |
self.w_1 = nn.Conv1d(d_in, d_hid, kernel_size=kernel_size, padding=(kernel_size - 1) // 2) | |
# position-wise | |
self.w_2 = nn.Conv1d(d_hid, d_in, kernel_size=1, padding=0) | |
self.layer_norm = nn.LayerNorm(d_in) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x: Tensor): | |
residual = x | |
output = x.transpose(1, 2) | |
output = self.w_2(F.relu(self.w_1(output))) | |
output = output.transpose(1, 2) | |
output = self.dropout(output) | |
output = self.layer_norm(output + residual) | |
return output | |
class FFTBlock(torch.nn.Module): | |
"""FFT Block""" | |
def __init__(self, d_model: int, d_inner: int, n_head: int, d_k: int, d_v: int, dropout: float = 0.1): | |
super(FFTBlock, self).__init__() | |
self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout) | |
self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout) | |
def forward(self, enc_input: Tensor, mask: Optional[Tensor] = None, attn_mask: Optional[Tensor] = None): | |
enc_output, enc_slf_attn = self.slf_attn(enc_input, enc_input, enc_input, mask=attn_mask) | |
enc_output = enc_output.masked_fill(mask.unsqueeze(-1), 0) | |
enc_output = self.pos_ffn(enc_output) | |
enc_output = enc_output.masked_fill(mask.unsqueeze(-1), 0) | |
return enc_output, enc_slf_attn | |
class ConvNorm(torch.nn.Module): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=None, | |
dilation=1, | |
bias=True, | |
w_init_gain='linear'): | |
super(ConvNorm, self).__init__() | |
if padding is None: | |
assert (kernel_size % 2 == 1) | |
padding = int(dilation * (kernel_size - 1) / 2) | |
self.conv = torch.nn.Conv1d(in_channels, | |
out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
bias=bias) | |
def forward(self, signal): | |
conv_signal = self.conv(signal) | |
return conv_signal | |