Spaces:
Sleeping
Sleeping
import sys | |
import torch | |
from .utils.stft import STFT | |
class Denoiser(torch.nn.Module): | |
""" Removes model bias from audio produced with waveglow """ | |
def __init__(self, melgan, filter_length=1024, n_overlap=4, | |
win_length=1024, mode='zeros',device='cpu'): | |
super(Denoiser, self).__init__() | |
self.stft = STFT(filter_length=filter_length, | |
hop_length=int(filter_length/n_overlap), | |
win_length=win_length,device=device).to(device) | |
if mode == 'zeros': | |
mel_input = torch.zeros( | |
(1, 80, 88)).to(device) | |
elif mode == 'normal': | |
mel_input = torch.randn( | |
(1, 80, 88)).to(device) | |
else: | |
raise Exception("Mode {} if not supported".format(mode)) | |
with torch.no_grad(): | |
bias_audio = melgan.inference(mel_input).float() # [B, 1, T] | |
bias_spec, _ = self.stft.transform(bias_audio.squeeze(0)) | |
self.register_buffer('bias_spec', bias_spec[:, :, 0][:, :, None]) | |
self.device = device | |
self.to(device) | |
def forward(self, audio, strength=0.1): | |
audio_spec, audio_angles = self.stft.transform(audio.to(self.device).float()) | |
audio_spec_denoised = audio_spec.to(self.device) - self.bias_spec * strength | |
audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0) | |
audio_denoised = self.stft.inverse(audio_spec_denoised, audio_angles.to(self.device)) | |
return audio_denoised |