File size: 6,035 Bytes
ada4b81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
"""Mesh data utilities."""
import random
import networkx as nx
import numpy as np
# import pyrr
from six.moves import range
import trimesh
from scipy.spatial.transform import Rotation


def to_mesh(vertices, faces, transpose=True, post_process=False):
    if transpose:
        vertices = vertices[:, [1, 2, 0]]
        
    if faces.min() == 1:
        faces = (np.array(faces) - 1).tolist()
    mesh = trimesh.Trimesh(vertices=vertices, faces=faces, process=False)
    
    if post_process:
        mesh.merge_vertices()
        mesh.update_faces(mesh.unique_faces())
        mesh.fix_normals()
    return mesh


def center_vertices(vertices):
    """Translate the vertices so that bounding box is centered at zero."""
    vert_min = vertices.min(axis=0)
    vert_max = vertices.max(axis=0)
    vert_center = 0.5 * (vert_min + vert_max)
    # vert_center = np.mean(vertices, axis=0)
    return vertices - vert_center


def face_to_cycles(face):
    """Find cycles in face."""
    g = nx.Graph()
    for v in range(len(face) - 1):
        g.add_edge(face[v], face[v + 1])
    g.add_edge(face[-1], face[0])
    return list(nx.cycle_basis(g))


def block_index(vertex, block_size=32):
    return (vertex[2] // block_size, vertex[1] // block_size, vertex[0] // block_size)

def block_id(block_index, num_blocks=4):
    return block_index[0] * num_blocks**2 + block_index[1] * num_blocks + block_index[2]


def normalize_vertices_scale(vertices, scale=0.95):
    """Scale the vertices so that the long axis of the bounding box is one."""
    vert_min = vertices.min(axis=0)
    vert_max = vertices.max(axis=0)
    extents = (vert_max - vert_min).max()
    return 2.0 * scale * vertices / (extents + 1e-6)


def quantize_process_mesh(vertices, faces, quantization_bits=8, block_first_order=True, block_size=32, num_blocks=4):
    """Quantize vertices, remove resulting duplicates and reindex faces."""
    vertices = discretize(vertices, num_discrete=2**quantization_bits)
    vertices, inv = np.unique(vertices, axis=0, return_inverse=True)

    if block_first_order:
        block_indices = np.array([block_index(v, block_size) for v in vertices])
        block_ids = np.array([block_id(b, num_blocks) for b in block_indices])
        sort_inds = np.lexsort((vertices[:, 0], vertices[:, 1], vertices[:, 2], block_ids))
    else:
        # Sort vertices by z then y then x.
        sort_inds = np.lexsort(vertices.T)
    
    vertices = vertices[sort_inds]
    faces = [np.argsort(sort_inds)[inv[f]] for f in faces]

    sub_faces = []
    for f in faces:
        cliques = face_to_cycles(f)
        for c in cliques:
            c_length = len(c)
            if c_length > 2:
                d = np.argmin(f)
                sub_faces.append([f[(d + i) % c_length] for i in range(c_length)])

    faces = sub_faces

    # Sort faces by lowest vertex indices. If two faces have the same lowest
    # index then sort by next lowest and so on.
    faces.sort(key=lambda f: tuple(sorted(f)))
    num_verts = vertices.shape[0]
    vert_connected = np.equal(
        np.arange(num_verts)[:, None], np.hstack(faces)[None]
    ).any(axis=-1)
    vertices = vertices[vert_connected]

    # Re-index faces to re-ordered vertices.
    vert_indices = np.arange(num_verts) - np.cumsum(1 - vert_connected.astype("int"))
    faces = [vert_indices[f].tolist() for f in faces]

    return vertices, faces


def process_mesh(vertices, faces, quantization_bits=8, augment=True, augment_dict=None):
    """Process mesh vertices and faces."""

    # Transpose so that z-axis is vertical.
    vertices = vertices[:, [2, 0, 1]]

    # Translate the vertices so that bounding box is centered at zero.
    vertices = center_vertices(vertices)

    if augment:
        vertices = augment_mesh(vertices, **augment_dict)

    # Scale the vertices so that the long diagonal of the bounding box is equal
    # to one.
    vertices = normalize_vertices_scale(vertices)

    # Quantize and sort vertices, remove resulting duplicates, sort and reindex
    # faces.
    vertices, faces = quantize_process_mesh(
        vertices, faces, quantization_bits=quantization_bits
    )
    vertices = undiscretize(vertices, num_discrete=2**quantization_bits)


    # Discard degenerate meshes without faces.
    return {
        "vertices": vertices,
        "faces": faces,
    }


def load_process_mesh(mesh_obj_path, quantization_bits=8, augment=False, augment_dict=None):
    """Load obj file and process."""
    # Load mesh
    mesh = trimesh.load(mesh_obj_path, force='mesh', process=False)
    return process_mesh(mesh.vertices, mesh.faces, quantization_bits, augment=augment, augment_dict=augment_dict)


def augment_mesh(vertices, scale_min=0.95, scale_max=1.05, rotation=0., jitter_strength=0.):
    '''scale vertices by a factor in [0.75, 1.25]'''
    
    # vertices [nv, 3]
    for i in range(3):
        # Generate a random scale factor
        scale = random.uniform(scale_min, scale_max)    

        # independently applied scaling across each axis of vertices
        vertices[:, i] *= scale
    
    if rotation != 0.:
        axis = [random.uniform(-1, 1), random.uniform(-1, 1), random.uniform(-1, 1)]
        radian = np.pi / 180 * rotation
        rotation = Rotation.from_rotvec(radian * np.array(axis))
        vertices =rotation.apply(vertices)
        
        
    if jitter_strength != 0.:
        jitter_amount = np.random.uniform(-jitter_strength, jitter_strength)
        vertices += jitter_amount
    
        
    return vertices


def discretize(
    t,
    continuous_range = (-1, 1),
    num_discrete: int = 128
):
    lo, hi = continuous_range
    assert hi > lo

    t = (t - lo) / (hi - lo)
    t *= num_discrete
    t -= 0.5

    return t.round().astype(np.int32).clip(min = 0, max = num_discrete - 1)


def undiscretize(
    t,
    continuous_range = (-1, 1),
    num_discrete: int = 128
):
    lo, hi = continuous_range
    assert hi > lo

    t = t.astype(np.float32)

    t += 0.5
    t /= num_discrete
    return t * (hi - lo) + lo