File size: 5,285 Bytes
ada4b81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
import torch.nn.functional as F

from typing import Optional

from miche.michelangelo.models.modules.distributions import DiagonalGaussianDistribution
from miche.michelangelo.utils import misc


class ContrastKLNearFar(nn.Module):
    def __init__(self,
                 contrast_weight: float = 1.0,
                 near_weight: float = 0.1,
                 kl_weight: float = 1.0,
                 num_near_samples: Optional[int] = None):

        super().__init__()

        self.labels = None
        self.last_local_batch_size = None

        self.contrast_weight = contrast_weight
        self.near_weight = near_weight
        self.kl_weight = kl_weight
        self.num_near_samples = num_near_samples
        self.geo_criterion = nn.BCEWithLogitsLoss()

    def forward(self,
                shape_embed: torch.FloatTensor,
                text_embed: torch.FloatTensor,
                image_embed: torch.FloatTensor,
                logit_scale: torch.FloatTensor,
                posteriors: Optional[DiagonalGaussianDistribution],
                shape_logits: torch.FloatTensor,
                shape_labels: torch.FloatTensor,
                split: Optional[str] = "train", **kwargs):
        
        # shape_embed: torch.FloatTensor
        # text_embed: torch.FloatTensor
        # image_embed: torch.FloatTensor
        # logit_scale: torch.FloatTensor
        # posteriors: Optional[DiagonalGaussianDistribution]
        # shape_logits: torch.FloatTensor
        # shape_labels: torch.FloatTensor

        local_batch_size = shape_embed.size(0)

        if local_batch_size != self.last_local_batch_size:
            self.labels = local_batch_size * misc.get_rank() + torch.arange(
                local_batch_size, device=shape_embed.device
            ).long()
            self.last_local_batch_size = local_batch_size

        # normalized features
        shape_embed = F.normalize(shape_embed, dim=-1, p=2)
        text_embed = F.normalize(text_embed, dim=-1, p=2)
        image_embed = F.normalize(image_embed, dim=-1, p=2)

        # gather features from all GPUs
        shape_embed_all, text_embed_all, image_embed_all = misc.all_gather_batch(
            [shape_embed, text_embed, image_embed]
        )

        # cosine similarity as logits
        logits_per_shape_text = logit_scale * shape_embed @ text_embed_all.t()
        logits_per_text_shape = logit_scale * text_embed @ shape_embed_all.t()
        logits_per_shape_image = logit_scale * shape_embed @ image_embed_all.t()
        logits_per_image_shape = logit_scale * image_embed @ shape_embed_all.t()
        contrast_loss = (F.cross_entropy(logits_per_shape_text, self.labels) +
                         F.cross_entropy(logits_per_text_shape, self.labels)) / 2 + \
                        (F.cross_entropy(logits_per_shape_image, self.labels) +
                         F.cross_entropy(logits_per_image_shape, self.labels)) / 2

        # shape reconstruction
        if self.num_near_samples is None:
            num_vol = shape_logits.shape[1] // 2
        else:
            num_vol = shape_logits.shape[1] - self.num_near_samples

        vol_logits = shape_logits[:, 0:num_vol]
        vol_labels = shape_labels[:, 0:num_vol]

        near_logits = shape_logits[:, num_vol:]
        near_labels = shape_labels[:, num_vol:]

        # occupancy loss
        vol_bce = self.geo_criterion(vol_logits.float(), vol_labels.float())
        near_bce = self.geo_criterion(near_logits.float(), near_labels.float())

        if posteriors is None:
            kl_loss = torch.tensor(0.0, dtype=vol_logits.dtype, device=vol_logits.device)
        else:
            kl_loss = posteriors.kl(dims=(1, 2))
            kl_loss = torch.mean(kl_loss)

        loss = vol_bce + near_bce * self.near_weight + kl_loss * self.kl_weight + contrast_loss * self.contrast_weight

        # compute accuracy
        with torch.no_grad():
            pred = torch.argmax(logits_per_shape_text, dim=-1)
            correct = pred.eq(self.labels).sum()
            shape_text_acc = 100 * correct / local_batch_size

            pred = torch.argmax(logits_per_shape_image, dim=-1)
            correct = pred.eq(self.labels).sum()
            shape_image_acc = 100 * correct / local_batch_size

            preds = shape_logits >= 0
            accuracy = (preds == shape_labels).float()
            accuracy = accuracy.mean()

            log = {
                "{}/contrast".format(split): contrast_loss.clone().detach(),
                "{}/near".format(split): near_bce.detach(),
                "{}/far".format(split): vol_bce.detach(),
                "{}/kl".format(split): kl_loss.detach(),
                "{}/shape_text_acc".format(split): shape_text_acc,
                "{}/shape_image_acc".format(split): shape_image_acc,
                "{}/total_loss".format(split): loss.clone().detach(),
                "{}/accuracy".format(split): accuracy,
            }

            if posteriors is not None:
                log[f"{split}/mean"] = posteriors.mean.mean().detach()
                log[f"{split}/std_mean"] = posteriors.std.mean().detach()
                log[f"{split}/std_max"] = posteriors.std.max().detach()

        return loss, log