Update streamlit==1.19.0 and object detection demo
Browse files- app.py +65 -75
- pages/1_object_detection.py +65 -75
- requirements.txt +1 -1
app.py
CHANGED
@@ -52,7 +52,14 @@ CLASSES = [
|
|
52 |
]
|
53 |
|
54 |
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
def generate_label_colors():
|
57 |
return np.random.uniform(0, 255, size=(len(CLASSES), 3))
|
58 |
|
@@ -62,13 +69,6 @@ COLORS = generate_label_colors()
|
|
62 |
download_file(MODEL_URL, MODEL_LOCAL_PATH, expected_size=23147564)
|
63 |
download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=29353)
|
64 |
|
65 |
-
DEFAULT_CONFIDENCE_THRESHOLD = 0.5
|
66 |
-
|
67 |
-
|
68 |
-
class Detection(NamedTuple):
|
69 |
-
name: str
|
70 |
-
prob: float
|
71 |
-
|
72 |
|
73 |
# Session-specific caching
|
74 |
cache_key = "object_detection_dnn"
|
@@ -78,77 +78,70 @@ else:
|
|
78 |
net = cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(MODEL_LOCAL_PATH))
|
79 |
st.session_state[cache_key] = net
|
80 |
|
81 |
-
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
86 |
|
87 |
|
88 |
-
def
|
89 |
-
# loop over the detections
|
90 |
-
(h, w) = image.shape[:2]
|
91 |
-
result: List[Detection] = []
|
92 |
-
for i in np.arange(0, detections.shape[2]):
|
93 |
-
confidence = detections[0, 0, i, 2]
|
94 |
-
|
95 |
-
if confidence > confidence_threshold:
|
96 |
-
# extract the index of the class label from the `detections`,
|
97 |
-
# then compute the (x, y)-coordinates of the bounding box for
|
98 |
-
# the object
|
99 |
-
idx = int(detections[0, 0, i, 1])
|
100 |
-
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
|
101 |
-
(startX, startY, endX, endY) = box.astype("int")
|
102 |
-
|
103 |
-
name = CLASSES[idx]
|
104 |
-
result.append(Detection(name=name, prob=float(confidence)))
|
105 |
-
|
106 |
-
# display the prediction
|
107 |
-
label = f"{name}: {round(confidence * 100, 2)}%"
|
108 |
-
cv2.rectangle(image, (startX, startY), (endX, endY), COLORS[idx], 2)
|
109 |
-
y = startY - 15 if startY - 15 > 15 else startY + 15
|
110 |
-
cv2.putText(
|
111 |
-
image,
|
112 |
-
label,
|
113 |
-
(startX, y),
|
114 |
-
cv2.FONT_HERSHEY_SIMPLEX,
|
115 |
-
0.5,
|
116 |
-
COLORS[idx],
|
117 |
-
2,
|
118 |
-
)
|
119 |
-
return image, result
|
120 |
-
|
121 |
-
|
122 |
-
result_queue: queue.Queue = (
|
123 |
-
queue.Queue()
|
124 |
-
) # TODO: A general-purpose shared state object may be more useful.
|
125 |
-
|
126 |
-
|
127 |
-
def callback(frame: av.VideoFrame) -> av.VideoFrame:
|
128 |
image = frame.to_ndarray(format="bgr24")
|
|
|
|
|
129 |
blob = cv2.dnn.blobFromImage(
|
130 |
cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
|
131 |
)
|
132 |
net.setInput(blob)
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
#
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
if st.checkbox("Show the detected labels", value=True):
|
154 |
if webrtc_ctx.state.playing:
|
@@ -159,10 +152,7 @@ if st.checkbox("Show the detected labels", value=True):
|
|
159 |
# Then the rendered video frames and the labels displayed here
|
160 |
# are not strictly synchronized.
|
161 |
while True:
|
162 |
-
|
163 |
-
result = result_queue.get(timeout=1.0)
|
164 |
-
except queue.Empty:
|
165 |
-
result = None
|
166 |
labels_placeholder.table(result)
|
167 |
|
168 |
st.markdown(
|
|
|
52 |
]
|
53 |
|
54 |
|
55 |
+
class Detection(NamedTuple):
|
56 |
+
class_id: int
|
57 |
+
label: str
|
58 |
+
score: float
|
59 |
+
box: np.ndarray
|
60 |
+
|
61 |
+
|
62 |
+
@st.cache_resource # type: ignore
|
63 |
def generate_label_colors():
|
64 |
return np.random.uniform(0, 255, size=(len(CLASSES), 3))
|
65 |
|
|
|
69 |
download_file(MODEL_URL, MODEL_LOCAL_PATH, expected_size=23147564)
|
70 |
download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=29353)
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
# Session-specific caching
|
74 |
cache_key = "object_detection_dnn"
|
|
|
78 |
net = cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(MODEL_LOCAL_PATH))
|
79 |
st.session_state[cache_key] = net
|
80 |
|
81 |
+
score_threshold = st.slider("Score threshold", 0.0, 1.0, 0.5, 0.05)
|
82 |
|
83 |
+
# NOTE: The callback will be called in another thread,
|
84 |
+
# so use a queue here for thread-safety to pass the data
|
85 |
+
# from inside to outside the callback.
|
86 |
+
# TODO: A general-purpose shared state object may be more useful.
|
87 |
+
result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
|
88 |
|
89 |
|
90 |
+
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
image = frame.to_ndarray(format="bgr24")
|
92 |
+
|
93 |
+
# Run inference
|
94 |
blob = cv2.dnn.blobFromImage(
|
95 |
cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
|
96 |
)
|
97 |
net.setInput(blob)
|
98 |
+
output = net.forward()
|
99 |
+
|
100 |
+
h, w = image.shape[:2]
|
101 |
+
|
102 |
+
# Convert the output array into a structured form.
|
103 |
+
output = output.squeeze() # (1, 1, N, 7) -> (N, 7)
|
104 |
+
output = output[output[:, 2] >= score_threshold]
|
105 |
+
detections = [
|
106 |
+
Detection(
|
107 |
+
class_id=int(detection[1]),
|
108 |
+
label=CLASSES[int(detection[1])],
|
109 |
+
score=float(detection[2]),
|
110 |
+
box=(detection[3:7] * np.array([w, h, w, h])),
|
111 |
+
)
|
112 |
+
for detection in output
|
113 |
+
]
|
114 |
+
|
115 |
+
# Render bounding boxes and captions
|
116 |
+
for detection in detections:
|
117 |
+
caption = f"{detection.label}: {round(detection.score * 100, 2)}%"
|
118 |
+
color = COLORS[detection.class_id]
|
119 |
+
xmin, ymin, xmax, ymax = detection.box.astype("int")
|
120 |
+
|
121 |
+
cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2)
|
122 |
+
cv2.putText(
|
123 |
+
image,
|
124 |
+
caption,
|
125 |
+
(xmin, ymin - 15 if ymin - 15 > 15 else ymin + 15),
|
126 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
127 |
+
0.5,
|
128 |
+
color,
|
129 |
+
2,
|
130 |
+
)
|
131 |
+
|
132 |
+
result_queue.put(detections)
|
133 |
+
|
134 |
+
return av.VideoFrame.from_ndarray(image, format="bgr24")
|
135 |
+
|
136 |
+
|
137 |
+
webrtc_ctx = webrtc_streamer(
|
138 |
+
key="object-detection",
|
139 |
+
mode=WebRtcMode.SENDRECV,
|
140 |
+
rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]},
|
141 |
+
video_frame_callback=video_frame_callback,
|
142 |
+
media_stream_constraints={"video": True, "audio": False},
|
143 |
+
async_processing=True,
|
144 |
+
)
|
145 |
|
146 |
if st.checkbox("Show the detected labels", value=True):
|
147 |
if webrtc_ctx.state.playing:
|
|
|
152 |
# Then the rendered video frames and the labels displayed here
|
153 |
# are not strictly synchronized.
|
154 |
while True:
|
155 |
+
result = result_queue.get()
|
|
|
|
|
|
|
156 |
labels_placeholder.table(result)
|
157 |
|
158 |
st.markdown(
|
pages/1_object_detection.py
CHANGED
@@ -52,7 +52,14 @@ CLASSES = [
|
|
52 |
]
|
53 |
|
54 |
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
def generate_label_colors():
|
57 |
return np.random.uniform(0, 255, size=(len(CLASSES), 3))
|
58 |
|
@@ -62,13 +69,6 @@ COLORS = generate_label_colors()
|
|
62 |
download_file(MODEL_URL, MODEL_LOCAL_PATH, expected_size=23147564)
|
63 |
download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=29353)
|
64 |
|
65 |
-
DEFAULT_CONFIDENCE_THRESHOLD = 0.5
|
66 |
-
|
67 |
-
|
68 |
-
class Detection(NamedTuple):
|
69 |
-
name: str
|
70 |
-
prob: float
|
71 |
-
|
72 |
|
73 |
# Session-specific caching
|
74 |
cache_key = "object_detection_dnn"
|
@@ -78,77 +78,70 @@ else:
|
|
78 |
net = cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(MODEL_LOCAL_PATH))
|
79 |
st.session_state[cache_key] = net
|
80 |
|
81 |
-
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
86 |
|
87 |
|
88 |
-
def
|
89 |
-
# loop over the detections
|
90 |
-
(h, w) = image.shape[:2]
|
91 |
-
result: List[Detection] = []
|
92 |
-
for i in np.arange(0, detections.shape[2]):
|
93 |
-
confidence = detections[0, 0, i, 2]
|
94 |
-
|
95 |
-
if confidence > confidence_threshold:
|
96 |
-
# extract the index of the class label from the `detections`,
|
97 |
-
# then compute the (x, y)-coordinates of the bounding box for
|
98 |
-
# the object
|
99 |
-
idx = int(detections[0, 0, i, 1])
|
100 |
-
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
|
101 |
-
(startX, startY, endX, endY) = box.astype("int")
|
102 |
-
|
103 |
-
name = CLASSES[idx]
|
104 |
-
result.append(Detection(name=name, prob=float(confidence)))
|
105 |
-
|
106 |
-
# display the prediction
|
107 |
-
label = f"{name}: {round(confidence * 100, 2)}%"
|
108 |
-
cv2.rectangle(image, (startX, startY), (endX, endY), COLORS[idx], 2)
|
109 |
-
y = startY - 15 if startY - 15 > 15 else startY + 15
|
110 |
-
cv2.putText(
|
111 |
-
image,
|
112 |
-
label,
|
113 |
-
(startX, y),
|
114 |
-
cv2.FONT_HERSHEY_SIMPLEX,
|
115 |
-
0.5,
|
116 |
-
COLORS[idx],
|
117 |
-
2,
|
118 |
-
)
|
119 |
-
return image, result
|
120 |
-
|
121 |
-
|
122 |
-
result_queue: queue.Queue = (
|
123 |
-
queue.Queue()
|
124 |
-
) # TODO: A general-purpose shared state object may be more useful.
|
125 |
-
|
126 |
-
|
127 |
-
def callback(frame: av.VideoFrame) -> av.VideoFrame:
|
128 |
image = frame.to_ndarray(format="bgr24")
|
|
|
|
|
129 |
blob = cv2.dnn.blobFromImage(
|
130 |
cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
|
131 |
)
|
132 |
net.setInput(blob)
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
#
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
if st.checkbox("Show the detected labels", value=True):
|
154 |
if webrtc_ctx.state.playing:
|
@@ -159,10 +152,7 @@ if st.checkbox("Show the detected labels", value=True):
|
|
159 |
# Then the rendered video frames and the labels displayed here
|
160 |
# are not strictly synchronized.
|
161 |
while True:
|
162 |
-
|
163 |
-
result = result_queue.get(timeout=1.0)
|
164 |
-
except queue.Empty:
|
165 |
-
result = None
|
166 |
labels_placeholder.table(result)
|
167 |
|
168 |
st.markdown(
|
|
|
52 |
]
|
53 |
|
54 |
|
55 |
+
class Detection(NamedTuple):
|
56 |
+
class_id: int
|
57 |
+
label: str
|
58 |
+
score: float
|
59 |
+
box: np.ndarray
|
60 |
+
|
61 |
+
|
62 |
+
@st.cache_resource # type: ignore
|
63 |
def generate_label_colors():
|
64 |
return np.random.uniform(0, 255, size=(len(CLASSES), 3))
|
65 |
|
|
|
69 |
download_file(MODEL_URL, MODEL_LOCAL_PATH, expected_size=23147564)
|
70 |
download_file(PROTOTXT_URL, PROTOTXT_LOCAL_PATH, expected_size=29353)
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
# Session-specific caching
|
74 |
cache_key = "object_detection_dnn"
|
|
|
78 |
net = cv2.dnn.readNetFromCaffe(str(PROTOTXT_LOCAL_PATH), str(MODEL_LOCAL_PATH))
|
79 |
st.session_state[cache_key] = net
|
80 |
|
81 |
+
score_threshold = st.slider("Score threshold", 0.0, 1.0, 0.5, 0.05)
|
82 |
|
83 |
+
# NOTE: The callback will be called in another thread,
|
84 |
+
# so use a queue here for thread-safety to pass the data
|
85 |
+
# from inside to outside the callback.
|
86 |
+
# TODO: A general-purpose shared state object may be more useful.
|
87 |
+
result_queue: "queue.Queue[List[Detection]]" = queue.Queue()
|
88 |
|
89 |
|
90 |
+
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
image = frame.to_ndarray(format="bgr24")
|
92 |
+
|
93 |
+
# Run inference
|
94 |
blob = cv2.dnn.blobFromImage(
|
95 |
cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5
|
96 |
)
|
97 |
net.setInput(blob)
|
98 |
+
output = net.forward()
|
99 |
+
|
100 |
+
h, w = image.shape[:2]
|
101 |
+
|
102 |
+
# Convert the output array into a structured form.
|
103 |
+
output = output.squeeze() # (1, 1, N, 7) -> (N, 7)
|
104 |
+
output = output[output[:, 2] >= score_threshold]
|
105 |
+
detections = [
|
106 |
+
Detection(
|
107 |
+
class_id=int(detection[1]),
|
108 |
+
label=CLASSES[int(detection[1])],
|
109 |
+
score=float(detection[2]),
|
110 |
+
box=(detection[3:7] * np.array([w, h, w, h])),
|
111 |
+
)
|
112 |
+
for detection in output
|
113 |
+
]
|
114 |
+
|
115 |
+
# Render bounding boxes and captions
|
116 |
+
for detection in detections:
|
117 |
+
caption = f"{detection.label}: {round(detection.score * 100, 2)}%"
|
118 |
+
color = COLORS[detection.class_id]
|
119 |
+
xmin, ymin, xmax, ymax = detection.box.astype("int")
|
120 |
+
|
121 |
+
cv2.rectangle(image, (xmin, ymin), (xmax, ymax), color, 2)
|
122 |
+
cv2.putText(
|
123 |
+
image,
|
124 |
+
caption,
|
125 |
+
(xmin, ymin - 15 if ymin - 15 > 15 else ymin + 15),
|
126 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
127 |
+
0.5,
|
128 |
+
color,
|
129 |
+
2,
|
130 |
+
)
|
131 |
+
|
132 |
+
result_queue.put(detections)
|
133 |
+
|
134 |
+
return av.VideoFrame.from_ndarray(image, format="bgr24")
|
135 |
+
|
136 |
+
|
137 |
+
webrtc_ctx = webrtc_streamer(
|
138 |
+
key="object-detection",
|
139 |
+
mode=WebRtcMode.SENDRECV,
|
140 |
+
rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]},
|
141 |
+
video_frame_callback=video_frame_callback,
|
142 |
+
media_stream_constraints={"video": True, "audio": False},
|
143 |
+
async_processing=True,
|
144 |
+
)
|
145 |
|
146 |
if st.checkbox("Show the detected labels", value=True):
|
147 |
if webrtc_ctx.state.playing:
|
|
|
152 |
# Then the rendered video frames and the labels displayed here
|
153 |
# are not strictly synchronized.
|
154 |
while True:
|
155 |
+
result = result_queue.get()
|
|
|
|
|
|
|
156 |
labels_placeholder.table(result)
|
157 |
|
158 |
st.markdown(
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
opencv-python-headless==4.5.5.64
|
2 |
pydub==0.25.1
|
3 |
-
streamlit==1.
|
4 |
streamlit_webrtc==0.44.6
|
|
|
1 |
opencv-python-headless==4.5.5.64
|
2 |
pydub==0.25.1
|
3 |
+
streamlit==1.19.0
|
4 |
streamlit_webrtc==0.44.6
|