File size: 3,132 Bytes
2f0e211
 
 
 
 
 
 
 
 
 
e455307
 
 
2f0e211
 
 
e455307
 
 
 
 
 
 
 
 
 
 
 
 
 
2f0e211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e455307
2f0e211
 
 
 
 
 
 
 
e455307
2f0e211
 
 
 
 
 
 
 
 
 
 
 
 
 
e455307
2f0e211
e455307
 
 
2f0e211
 
 
 
e455307
 
2f0e211
e455307
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import gradio as gr
import os
import time
from langchain.document_loaders import OnlinePDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.llms import OpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain

# Set OpenAI API key from environment variable
os.environ['OPENAI_API_KEY'] = os.getenv("Your_API_Key")

def loading_pdf():
    return "Loading..."

def pdf_changes(pdf_doc):
    loader = OnlinePDFLoader(pdf_doc.name)
    documents = loader.load()
    text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
    texts = text_splitter.split_documents(documents)
    embeddings = OpenAIEmbeddings()
    db = Chroma.from_documents(texts, embeddings)
    retriever = db.as_retriever()
    global qa 
    qa = ConversationalRetrievalChain.from_llm(
        llm=OpenAI(temperature=0.5), 
        retriever=retriever, 
        return_source_documents=False)
    return "Ready"

def add_text(history, text):
    history = history + [(text, None)]
    return history, ""

def bot(history):
    response = infer(history[-1][0], history)
    history[-1][1] = ""
    
    for character in response:     
        history[-1][1] += character
        time.sleep(0.05)
        yield history
    
def infer(question, history):
    res = []
    for human, ai in history[:-1]:
        pair = (human, ai)
        res.append(pair)
    
    chat_history = res
    query = question
    result = qa({"question": query, "chat_history": chat_history})
    return result["answer"]

css = """
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""

title = """
<div style="text-align: center;max-width: 700px;">
    <h1>Chat with PDF • OpenAI</h1>
    <p style="text-align: center;">Upload a .PDF from your computer, click the "Load PDF to LangChain" button, <br />
    when everything is ready, you can start asking questions about the pdf ;) <br />
    This version is set to store chat history, and uses OpenAI as LLM.</p>
</div>
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML(title)
        
        with gr.Column():
            pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
            with gr.Row():
                langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
                load_pdf = gr.Button("Load pdf to langchain")
        
        chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
        question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter")
        submit_btn = gr.Button("Send Message")
        
    load_pdf.click(loading_pdf, None, langchain_status, queue=False)
    load_pdf.click(pdf_changes, inputs=[pdf_doc], outputs=[langchain_status], queue=False)
    question.submit(add_text, [chatbot, question], [chatbot, question]).then(
        bot, chatbot, chatbot
    )
    submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
        bot, chatbot, chatbot
    )

demo.launch()