wilbin's picture
Upload 248 files
8896a5f verified
<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>dscript.models.interaction &mdash; D-SCRIPT v1.0-beta documentation</title>
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<!--[if lt IE 9]>
<script src="../../../_static/js/html5shiv.min.js"></script>
<![endif]-->
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script src="../../../_static/jquery.js"></script>
<script src="../../../_static/underscore.js"></script>
<script src="../../../_static/doctools.js"></script>
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../../index.html" class="icon icon-home"> D-SCRIPT
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../../installation.html">Installation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../usage.html">Usage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../data.html">Data</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../api/index.html">API</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../../index.html">D-SCRIPT</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../../index.html" class="icon icon-home"></a> &raquo;</li>
<li><a href="../../index.html">Module code</a> &raquo;</li>
<li>dscript.models.interaction</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<h1>Source code for dscript.models.interaction</h1><div class="highlight"><pre>
<span></span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">Interaction model classes.</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
<span class="kn">import</span> <span class="nn">torch.functional</span> <span class="k">as</span> <span class="nn">F</span>
<div class="viewcode-block" id="LogisticActivation"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.interaction.LogisticActivation">[docs]</a><span class="k">class</span> <span class="nc">LogisticActivation</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Implementation of Generalized Sigmoid</span>
<span class="sd"> Applies the element-wise function:</span>
<span class="sd"> :math:`\\sigma(x) = \\frac{1}{1 + \\exp(-k(x-x_0))}`</span>
<span class="sd"> :param x0: The value of the sigmoid midpoint</span>
<span class="sd"> :type x0: float</span>
<span class="sd"> :param k: The slope of the sigmoid - trainable - :math:`k \\geq 0`</span>
<span class="sd"> :type k: float</span>
<span class="sd"> :param train: Whether :math:`k` is a trainable parameter</span>
<span class="sd"> :type train: bool</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x0</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">k</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">train</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">LogisticActivation</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">x0</span> <span class="o">=</span> <span class="n">x0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">k</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">FloatTensor</span><span class="p">([</span><span class="nb">float</span><span class="p">(</span><span class="n">k</span><span class="p">)]))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">k</span><span class="o">.</span><span class="n">requiresGrad</span> <span class="o">=</span> <span class="n">train</span>
<div class="viewcode-block" id="LogisticActivation.forward"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.interaction.LogisticActivation.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Applies the function to the input elementwise</span>
<span class="sd"> :param x: :math:`(N \\times *)` where :math:`*` means, any number of additional dimensions</span>
<span class="sd"> :type x: torch.Tensor</span>
<span class="sd"> :return: :math:`(N \\times *)`, same shape as the input</span>
<span class="sd"> :rtype: torch.Tensor</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">clamp</span><span class="p">(</span><span class="mi">1</span> <span class="o">/</span> <span class="p">(</span><span class="mi">1</span> <span class="o">+</span> <span class="n">torch</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="bp">self</span><span class="o">.</span><span class="n">k</span> <span class="o">*</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">x0</span><span class="p">))),</span> <span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">squeeze</span><span class="p">()</span>
<span class="k">return</span> <span class="n">out</span></div>
<span class="k">def</span> <span class="nf">clip</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Restricts sigmoid slope :math:`k` to be greater than or equal to 0, if :math:`k` is trained.</span>
<span class="sd"> :meta private:</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">k</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">clamp_</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span></div>
<div class="viewcode-block" id="ModelInteraction"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.interaction.ModelInteraction">[docs]</a><span class="k">class</span> <span class="nc">ModelInteraction</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Main D-SCRIPT model. Contains an embedding and contact model and offers access to those models. Computes pooling operations on contact map to generate interaction probability.</span>
<span class="sd"> :param embedding: Embedding model</span>
<span class="sd"> :type embedding: dscript.models.embedding.FullyConnectedEmbed</span>
<span class="sd"> :param contact: Contact model</span>
<span class="sd"> :type contact: dscript.models.contact.ContactCNN</span>
<span class="sd"> :param use_cuda: Whether the model should be run on GPU</span>
<span class="sd"> :type use_cuda: bool</span>
<span class="sd"> :param pool_size: width of max-pool [default 9]</span>
<span class="sd"> :type pool_size: bool</span>
<span class="sd"> :param theta_init: initialization value of :math:`\\theta` for weight matrix [default: 1]</span>
<span class="sd"> :type theta_init: float</span>
<span class="sd"> :param lambda_init: initialization value of :math:`\\lambda` for weight matrix [default: 0]</span>
<span class="sd"> :type lambda_init: float</span>
<span class="sd"> :param gamma_init: initialization value of :math:`\\gamma` for global pooling [default: 0]</span>
<span class="sd"> :type gamma_init: float</span>
<span class="sd"> :param use_W: whether to use the weighting matrix [default: True]</span>
<span class="sd"> :type use_W: bool</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">embedding</span><span class="p">,</span>
<span class="n">contact</span><span class="p">,</span>
<span class="n">pool_size</span><span class="o">=</span><span class="mi">9</span><span class="p">,</span>
<span class="n">theta_init</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">lambda_init</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">gamma_init</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
<span class="n">use_W</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">ModelInteraction</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">use_W</span> <span class="o">=</span> <span class="n">use_W</span>
<span class="bp">self</span><span class="o">.</span><span class="n">activation</span> <span class="o">=</span> <span class="n">LogisticActivation</span><span class="p">(</span><span class="n">x0</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">k</span><span class="o">=</span><span class="mi">20</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embedding</span> <span class="o">=</span> <span class="n">embedding</span>
<span class="bp">self</span><span class="o">.</span><span class="n">contact</span> <span class="o">=</span> <span class="n">contact</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_W</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">theta</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">FloatTensor</span><span class="p">([</span><span class="n">theta_init</span><span class="p">]))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">lambda_</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">FloatTensor</span><span class="p">([</span><span class="n">lambda_init</span><span class="p">]))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">maxPool</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">MaxPool2d</span><span class="p">(</span><span class="n">pool_size</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="n">pool_size</span> <span class="o">//</span> <span class="mi">2</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">gamma</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">FloatTensor</span><span class="p">([</span><span class="n">gamma_init</span><span class="p">]))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">clip</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">clip</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Clamp model values</span>
<span class="sd"> :meta private:</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">contact</span><span class="o">.</span><span class="n">clip</span><span class="p">()</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_W</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">theta</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">clamp_</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">lambda_</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">clamp_</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">gamma</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">clamp_</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<div class="viewcode-block" id="ModelInteraction.embed"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.interaction.ModelInteraction.embed">[docs]</a> <span class="k">def</span> <span class="nf">embed</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">z</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Project down input language model embeddings into low dimension using projection module</span>
<span class="sd"> :param z: Language model embedding :math:`(b \\times N \\times d_0)`</span>
<span class="sd"> :type z: torch.Tensor</span>
<span class="sd"> :return: D-SCRIPT projection :math:`(b \\times N \\times d)`</span>
<span class="sd"> :rtype: torch.Tensor</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">embedding</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="n">z</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">embedding</span><span class="p">(</span><span class="n">z</span><span class="p">)</span></div>
<div class="viewcode-block" id="ModelInteraction.cpred"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.interaction.ModelInteraction.cpred">[docs]</a> <span class="k">def</span> <span class="nf">cpred</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Project down input language model embeddings into low dimension using projection module</span>
<span class="sd"> :param z0: Language model embedding :math:`(b \\times N \\times d_0)`</span>
<span class="sd"> :type z0: torch.Tensor</span>
<span class="sd"> :param z1: Language model embedding :math:`(b \\times N \\times d_0)`</span>
<span class="sd"> :type z1: torch.Tensor</span>
<span class="sd"> :return: Predicted contact map :math:`(b \\times N \\times M)`</span>
<span class="sd"> :rtype: torch.Tensor</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">e0</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">embed</span><span class="p">(</span><span class="n">z0</span><span class="p">)</span>
<span class="n">e1</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">embed</span><span class="p">(</span><span class="n">z1</span><span class="p">)</span>
<span class="n">B</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">contact</span><span class="o">.</span><span class="n">broadcast</span><span class="p">(</span><span class="n">e0</span><span class="p">,</span> <span class="n">e1</span><span class="p">)</span>
<span class="n">C</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">contact</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">B</span><span class="p">)</span>
<span class="k">return</span> <span class="n">C</span></div>
<div class="viewcode-block" id="ModelInteraction.map_predict"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.interaction.ModelInteraction.map_predict">[docs]</a> <span class="k">def</span> <span class="nf">map_predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Project down input language model embeddings into low dimension using projection module</span>
<span class="sd"> :param z0: Language model embedding :math:`(b \\times N \\times d_0)`</span>
<span class="sd"> :type z0: torch.Tensor</span>
<span class="sd"> :param z1: Language model embedding :math:`(b \\times N \\times d_0)`</span>
<span class="sd"> :type z1: torch.Tensor</span>
<span class="sd"> :return: Predicted contact map, predicted probability of interaction :math:`(b \\times N \\times d_0), (1)`</span>
<span class="sd"> :rtype: torch.Tensor, torch.Tensor</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">C</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">cpred</span><span class="p">(</span><span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">use_W</span><span class="p">:</span>
<span class="c1"># Create contact weighting matrix</span>
<span class="n">N</span><span class="p">,</span> <span class="n">M</span> <span class="o">=</span> <span class="n">C</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">2</span><span class="p">:]</span>
<span class="n">x1</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">from_numpy</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span> <span class="o">*</span> <span class="p">((</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">N</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span> <span class="o">-</span> <span class="p">((</span><span class="n">N</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span><span class="p">))</span> <span class="o">/</span> <span class="p">(</span><span class="o">-</span><span class="mi">1</span> <span class="o">*</span> <span class="p">((</span><span class="n">N</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)))</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">gamma</span><span class="o">.</span><span class="n">device</span><span class="o">.</span><span class="n">type</span> <span class="o">==</span> <span class="s1">&#39;cuda&#39;</span><span class="p">:</span>
<span class="n">x1</span> <span class="o">=</span> <span class="n">x1</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
<span class="n">x1</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">lambda_</span> <span class="o">*</span> <span class="n">x1</span><span class="p">)</span>
<span class="n">x2</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">from_numpy</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span> <span class="o">*</span> <span class="p">((</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">M</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span> <span class="o">-</span> <span class="p">((</span><span class="n">M</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span><span class="p">))</span> <span class="o">/</span> <span class="p">(</span><span class="o">-</span><span class="mi">1</span> <span class="o">*</span> <span class="p">((</span><span class="n">M</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)))</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">gamma</span><span class="o">.</span><span class="n">device</span><span class="o">.</span><span class="n">type</span> <span class="o">==</span> <span class="s1">&#39;cuda&#39;</span><span class="p">:</span>
<span class="n">x2</span> <span class="o">=</span> <span class="n">x2</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
<span class="n">x2</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">lambda_</span> <span class="o">*</span> <span class="n">x2</span><span class="p">)</span>
<span class="n">W</span> <span class="o">=</span> <span class="n">x1</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span> <span class="o">*</span> <span class="n">x2</span>
<span class="n">W</span> <span class="o">=</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">theta</span><span class="p">)</span> <span class="o">*</span> <span class="n">W</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">theta</span>
<span class="n">yhat</span> <span class="o">=</span> <span class="n">C</span> <span class="o">*</span> <span class="n">W</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">yhat</span> <span class="o">=</span> <span class="n">C</span>
<span class="n">yhat</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">maxPool</span><span class="p">(</span><span class="n">yhat</span><span class="p">)</span>
<span class="c1"># Mean of contact predictions where p_ij &gt; mu + gamma*sigma</span>
<span class="n">mu</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">yhat</span><span class="p">)</span>
<span class="n">sigma</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">var</span><span class="p">(</span><span class="n">yhat</span><span class="p">)</span>
<span class="n">Q</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">yhat</span> <span class="o">-</span> <span class="n">mu</span> <span class="o">-</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">gamma</span> <span class="o">*</span> <span class="n">sigma</span><span class="p">))</span>
<span class="n">phat</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">Q</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">sign</span><span class="p">(</span><span class="n">Q</span><span class="p">))</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">phat</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">activation</span><span class="p">(</span><span class="n">phat</span><span class="p">)</span>
<span class="k">return</span> <span class="n">C</span><span class="p">,</span> <span class="n">phat</span></div>
<div class="viewcode-block" id="ModelInteraction.predict"><a class="viewcode-back" href="../../../api/dscript.models.html#dscript.models.interaction.ModelInteraction.predict">[docs]</a> <span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Project down input language model embeddings into low dimension using projection module</span>
<span class="sd"> :param z0: Language model embedding :math:`(b \\times N \\times d_0)`</span>
<span class="sd"> :type z0: torch.Tensor</span>
<span class="sd"> :param z1: Language model embedding :math:`(b \\times N \\times d_0)`</span>
<span class="sd"> :type z1: torch.Tensor</span>
<span class="sd"> :return: Predicted probability of interaction</span>
<span class="sd"> :rtype: torch.Tensor, torch.Tensor</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">_</span><span class="p">,</span> <span class="n">phat</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">map_predict</span><span class="p">(</span><span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">)</span>
<span class="k">return</span> <span class="n">phat</span></div>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> :meta private:</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">z0</span><span class="p">,</span> <span class="n">z1</span><span class="p">)</span></div>
</pre></div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&#169; Copyright 2020, Samuel Sledzieski, Rohit Singh.
</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>