wildoctopus's picture
Update app.py
0038d2b verified
raw
history blame
3.79 kB
import PIL
import torch
import gradio as gr
import os
from process import load_seg_model, get_palette, generate_mask
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def read_content(file_path: str) -> str:
"""Read file content with error handling"""
try:
with open(file_path, 'r', encoding='utf-8') as f:
return f.read()
except FileNotFoundError:
print(f"Warning: File {file_path} not found")
return ""
except Exception as e:
print(f"Error reading file {file_path}: {str(e)}")
return ""
def initialize_and_load_models():
"""Initialize and load models with error handling"""
try:
checkpoint_path = 'model/cloth_segm.pth'
if not os.path.exists(checkpoint_path):
raise FileNotFoundError(f"Model checkpoint not found at {checkpoint_path}")
return load_seg_model(checkpoint_path, device=device)
except Exception as e:
print(f"Error loading model: {str(e)}")
return None
net = initialize_and_load_models()
if net is None:
raise RuntimeError("Failed to load model - check logs for details")
palette = get_palette(4)
def run(img):
"""Process image with error handling"""
if img is None:
raise gr.Error("No image uploaded")
try:
cloth_seg = generate_mask(img, net=net, palette=palette, device=device)
if cloth_seg is None:
raise gr.Error("Failed to generate mask")
return cloth_seg
except Exception as e:
raise gr.Error(f"Error processing image: {str(e)}")
# CSS styling
css = '''
.container {max-width: 1150px;margin: auto;padding-top: 1.5rem}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
'''
# Collect example images
image_dir = 'input'
image_list = []
if os.path.exists(image_dir):
image_list = [os.path.join(image_dir, file) for file in os.listdir(image_dir) if file.lower().endswith(('.png', '.jpg', '.jpeg'))]
image_list.sort()
examples = [[img] for img in image_list]
with gr.Blocks(css=css) as demo:
gr.HTML(read_content("header.html"))
with gr.Row():
with gr.Column():
image = gr.Image(elem_id="image_upload", type="pil", label="Input Image")
with gr.Column():
image_out = gr.Image(label="Output", elem_id="output-img")
with gr.Row():
gr.Examples(
examples=examples,
inputs=[image],
label="Examples - Input Images",
examples_per_page=12
)
btn = gr.Button("Run!", variant="primary")
btn.click(fn=run, inputs=[image], outputs=[image_out])
gr.HTML(
"""
<div class="footer">
<p>Model by <a href="" style="text-decoration: underline;" target="_blank">WildOctopus</a> - Gradio Demo by πŸ€— Hugging Face</p>
</div>
<div class="acknowledgments">
<p><h4>ACKNOWLEDGEMENTS</h4></p>
<p>U2net model is from original u2net repo. Thanks to <a href="https://github.com/xuebinqin/U-2-Net" target="_blank">Xuebin Qin</a>.</p>
<p>Codes modified from <a href="https://github.com/levindabhi/cloth-segmentation" target="_blank">levindabhi/cloth-segmentation</a></p>
</div>
"""
)
# For Hugging Face Spaces, use launch() without share=True
demo.launch()