Spaces:
Running
on
Zero
Running
on
Zero
### BACKEND | |
import requests | |
import torch | |
from PIL import Image | |
from io import BytesIO | |
import spaces | |
from diffusers import StableUnCLIPImg2ImgPipeline, UnCLIPImageVariationPipeline, ImagePipelineOutput | |
import inspect | |
from typing import List, Optional, Union | |
import PIL.Image | |
import torch | |
from torch.nn import functional as F | |
from transformers import ( | |
CLIPImageProcessor, | |
CLIPTextModelWithProjection, | |
CLIPTokenizer, | |
CLIPVisionModelWithProjection, | |
) | |
import gradio as gr | |
class customUnClipPipeline(UnCLIPImageVariationPipeline): | |
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt = "",): | |
batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
# get prompt text embeddings | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
text_mask = text_inputs.attention_mask.bool().to(device) | |
text_encoder_output = self.text_encoder(text_input_ids.to(device)) | |
prompt_embeds = text_encoder_output.text_embeds | |
text_encoder_hidden_states = text_encoder_output.last_hidden_state | |
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | |
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) | |
if do_classifier_free_guidance: | |
uncond_tokens = [negative_prompt] * batch_size | |
max_length = text_input_ids.shape[-1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
uncond_text_mask = uncond_input.attention_mask.bool().to(device) | |
negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device)) | |
negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds | |
uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) | |
seq_len = uncond_text_encoder_hidden_states.shape[1] | |
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) | |
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( | |
batch_size * num_images_per_prompt, seq_len, -1 | |
) | |
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) | |
# done duplicates | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) | |
text_mask = torch.cat([uncond_text_mask, text_mask]) | |
return prompt_embeds, text_encoder_hidden_states, text_mask | |
def __call__( | |
self, | |
text_input: str = "", | |
negative_prompt: str = "", | |
image: Optional[Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor]] = None, | |
num_images_per_prompt: int = 1, | |
decoder_num_inference_steps: int = 25, | |
super_res_num_inference_steps: int = 7, | |
generator: Optional[torch.Generator] = None, | |
decoder_latents: Optional[torch.Tensor] = None, | |
super_res_latents: Optional[torch.Tensor] = None, | |
image_embeddings: Optional[torch.Tensor] = None, | |
decoder_guidance_scale: float = 8.0, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
): | |
""" | |
The call function to the pipeline for generation. | |
Args: | |
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.Tensor`): | |
`Image` or tensor representing an image batch to be used as the starting point. If you provide a | |
tensor, it needs to be compatible with the [`CLIPImageProcessor`] | |
[configuration](https://huggingface.co/fusing/karlo-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json). | |
Can be left as `None` only when `image_embeddings` are passed. | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
decoder_num_inference_steps (`int`, *optional*, defaults to 25): | |
The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality | |
image at the expense of slower inference. | |
super_res_num_inference_steps (`int`, *optional*, defaults to 7): | |
The number of denoising steps for super resolution. More denoising steps usually lead to a higher | |
quality image at the expense of slower inference. | |
generator (`torch.Generator`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
decoder_latents (`torch.Tensor` of shape (batch size, channels, height, width), *optional*): | |
Pre-generated noisy latents to be used as inputs for the decoder. | |
super_res_latents (`torch.Tensor` of shape (batch size, channels, super res height, super res width), *optional*): | |
Pre-generated noisy latents to be used as inputs for the decoder. | |
decoder_guidance_scale (`float`, *optional*, defaults to 4.0): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
image_embeddings (`torch.Tensor`, *optional*): | |
Pre-defined image embeddings that can be derived from the image encoder. Pre-defined image embeddings | |
can be passed for tasks like image interpolations. `image` can be left as `None`. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
Returns: | |
[`~pipelines.ImagePipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is | |
returned where the first element is a list with the generated images. | |
""" | |
if image is not None: | |
if isinstance(image, PIL.Image.Image): | |
batch_size = 1 | |
elif isinstance(image, list): | |
batch_size = len(image) | |
else: | |
batch_size = image.shape[0] | |
else: | |
batch_size = image_embeddings.shape[0] | |
prompt = [text_input] * batch_size | |
device = self._execution_device | |
batch_size = batch_size * num_images_per_prompt | |
do_classifier_free_guidance = decoder_guidance_scale > 1.0 | |
prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt( | |
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt , | |
) | |
image_embeddings = self._encode_image(image, device, num_images_per_prompt, image_embeddings) | |
# decoder | |
text_encoder_hidden_states, additive_clip_time_embeddings = self.text_proj( | |
image_embeddings=image_embeddings, | |
prompt_embeds=prompt_embeds, | |
text_encoder_hidden_states=text_encoder_hidden_states, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
) | |
if device.type == "mps": | |
# HACK: MPS: There is a panic when padding bool tensors, | |
# so cast to int tensor for the pad and back to bool afterwards | |
text_mask = text_mask.type(torch.int) | |
decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=1) | |
decoder_text_mask = decoder_text_mask.type(torch.bool) | |
else: | |
decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=True) | |
self.decoder_scheduler.set_timesteps(decoder_num_inference_steps, device=device) | |
decoder_timesteps_tensor = self.decoder_scheduler.timesteps | |
num_channels_latents = self.decoder.config.in_channels | |
height = self.decoder.config.sample_size | |
width = self.decoder.config.sample_size | |
if decoder_latents is None: | |
decoder_latents = self.prepare_latents( | |
(batch_size, num_channels_latents, height, width), | |
text_encoder_hidden_states.dtype, | |
device, | |
generator, | |
decoder_latents, | |
self.decoder_scheduler, | |
) | |
for i, t in enumerate(self.progress_bar(decoder_timesteps_tensor)): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents | |
noise_pred = self.decoder( | |
sample=latent_model_input, | |
timestep=t, | |
encoder_hidden_states=text_encoder_hidden_states, | |
class_labels=additive_clip_time_embeddings, | |
attention_mask=decoder_text_mask, | |
).sample | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred_uncond, _ = noise_pred_uncond.split(latent_model_input.shape[1], dim=1) | |
noise_pred_text, predicted_variance = noise_pred_text.split(latent_model_input.shape[1], dim=1) | |
noise_pred = noise_pred_uncond + decoder_guidance_scale * (noise_pred_text - noise_pred_uncond) | |
noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) | |
if i + 1 == decoder_timesteps_tensor.shape[0]: | |
prev_timestep = None | |
else: | |
prev_timestep = decoder_timesteps_tensor[i + 1] | |
# compute the previous noisy sample x_t -> x_t-1 | |
decoder_latents = self.decoder_scheduler.step( | |
noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator | |
).prev_sample | |
decoder_latents = decoder_latents.clamp(-1, 1) | |
image_small = decoder_latents | |
# done decoder | |
# super res | |
self.super_res_scheduler.set_timesteps(super_res_num_inference_steps, device=device) | |
super_res_timesteps_tensor = self.super_res_scheduler.timesteps | |
channels = self.super_res_first.config.in_channels // 2 | |
height = self.super_res_first.config.sample_size | |
width = self.super_res_first.config.sample_size | |
if super_res_latents is None: | |
super_res_latents = self.prepare_latents( | |
(batch_size, channels, height, width), | |
image_small.dtype, | |
device, | |
generator, | |
super_res_latents, | |
self.super_res_scheduler, | |
) | |
if device.type == "mps": | |
# MPS does not support many interpolations | |
image_upscaled = F.interpolate(image_small, size=[height, width]) | |
else: | |
interpolate_antialias = {} | |
if "antialias" in inspect.signature(F.interpolate).parameters: | |
interpolate_antialias["antialias"] = True | |
image_upscaled = F.interpolate( | |
image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias | |
) | |
for i, t in enumerate(self.progress_bar(super_res_timesteps_tensor)): | |
# no classifier free guidance | |
if i == super_res_timesteps_tensor.shape[0] - 1: | |
unet = self.super_res_last | |
else: | |
unet = self.super_res_first | |
latent_model_input = torch.cat([super_res_latents, image_upscaled], dim=1) | |
noise_pred = unet( | |
sample=latent_model_input, | |
timestep=t, | |
).sample | |
if i + 1 == super_res_timesteps_tensor.shape[0]: | |
prev_timestep = None | |
else: | |
prev_timestep = super_res_timesteps_tensor[i + 1] | |
# compute the previous noisy sample x_t -> x_t-1 | |
super_res_latents = self.super_res_scheduler.step( | |
noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator | |
).prev_sample | |
image = super_res_latents | |
# done super res | |
self.maybe_free_model_hooks() | |
# post processing | |
image = image * 0.5 + 0.5 | |
image = image.clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |
### ADDITIONAL PIPELINE CODE FOR KARLO | |
torch_device = 'cpu' | |
pipe = customUnClipPipeline.from_pretrained("kakaobrain/karlo-v1-alpha-image-variations", torch_dtype=torch.float32, trust_remote_code=True, | |
# device=torch_device, | |
# device_map='cpu' | |
) | |
pipe.to("cuda") | |
# pipe.enable_model_cpu_offload() | |
# func for getting tensor embeddings from cand image | |
def load_image(image_dir): | |
image = Image.open(image_dir).convert("RGB") | |
return image | |
def load_img_from_URL(URL): | |
response = requests.get(URL) | |
init_image = Image.open(BytesIO(response.content)).convert("RGB") | |
return init_image | |
def embed_img(input_image): | |
tokens = pipe.feature_extractor(input_image).to(torch_device) | |
img_model = pipe.image_encoder.to(torch_device) | |
with torch.no_grad(): | |
embeds = img_model(torch.tensor(tokens.pixel_values[0]).unsqueeze(0).to(torch_device)) | |
return embeds.image_embeds.to(torch_device) | |
def localimg_2_embed(image_dir): | |
embeds = embed_img(load_image(image_dir)) | |
return embeds | |
def URLimg_2_embed(URL): | |
embeds = embed_img(load_img_from_URL(URL)) | |
return embeds | |
# random generator for softmaxxed outputs | |
def random_probdist(num_cands): | |
random_numbers = torch.randn(num_cands) | |
softmax_output = torch.nn.functional.softmax(random_numbers, dim=0).reshape((num_cands,1)) | |
return softmax_output | |
def scalesum_candtensors(list_scale, cand_tensors): | |
''' | |
quick note - just make sure your list_scale is the same length as ur cand_tensors, and also adds up to 1 | |
''' | |
assert sum(list_scale) == 1, f"you didn't input a valid probability distribution - make sure your scales add up to 1, currently it adds up to {sum(list_scale)}" | |
assert len(list_scale) == len(cand_tensors), f"your scale list is not the same length as your list of candidate tensors. len list = {len(list_scale)}, len cand tensors = {len(cand_tensors)}" | |
scaled = torch.tensor(list_scale), cand_tensors | |
output = scaled.sum(dim=0) | |
return output | |
def random_candtensor(cand_tensors): | |
scaled = random_probdist(len(cand_tensors)) * cand_tensors | |
output = scaled.sum(dim=0) | |
return output | |
# for displaying images | |
def image_grid(imgs, rows, cols): | |
assert len(imgs) == rows*cols | |
w, h = imgs[0].size | |
grid = Image.new('RGB', size=(cols*w, rows*h)) | |
grid_w, grid_h = grid.size | |
for i, img in enumerate(imgs): | |
grid.paste(img, box=(i%cols*w, i//cols*h)) | |
return grid | |
chaosclicker_willtensor = localimg_2_embed('willpaint-imgs/chaosclicker-willpaint.png').to(torch_device) | |
contentcnsr_willtensor = localimg_2_embed('willpaint-imgs/contentconnoisseur-willpaint.png').to(torch_device) | |
digdaydrmr_willtensor = localimg_2_embed('willpaint-imgs/digitaldaydreamer-willpaint.png').to(torch_device) | |
ecoexplr_willtensor = localimg_2_embed('willpaint-imgs/ecoexplorer-willpaint.png').to(torch_device) | |
fandomfox_willtensor = localimg_2_embed('willpaint-imgs/fandomfox-willpaint.png').to(torch_device) | |
mememaven_willtensor = localimg_2_embed('willpaint-imgs/mememaven-willpaint.png').to(torch_device) | |
newsnerd_willtensor = localimg_2_embed('willpaint-imgs/newnerd-willpaint.png').to(torch_device) | |
nostalgicnvgtr_willtensor = localimg_2_embed('willpaint-imgs/nostalgicnavigator-willpaint.png').to(torch_device) | |
scrollseeker_willtensor = localimg_2_embed('willpaint-imgs/scrollseeker-willpaint.png').to(torch_device) | |
trendtracker_willtensor = localimg_2_embed('willpaint-imgs/trendtracker-willpaint.png').to(torch_device) | |
will_cand_tensors = torch.cat([chaosclicker_willtensor, | |
contentcnsr_willtensor , | |
digdaydrmr_willtensor, | |
ecoexplr_willtensor, | |
fandomfox_willtensor, | |
mememaven_willtensor, | |
newsnerd_willtensor, | |
nostalgicnvgtr_willtensor, | |
scrollseeker_willtensor, | |
trendtracker_willtensor,], dim=0) | |
### FUNCTION FOR EXECUTION | |
def generate_freak(): | |
will_randomised_input = random_candtensor(will_cand_tensors).unsqueeze(0) | |
#will_randomised_input | |
output = pipe(image_embeddings=will_randomised_input.to("cuda"), num_images_per_prompt=1, decoder_num_inference_steps = 15, super_res_num_inference_steps = 4) | |
return output.images[0] | |
### GRADIO BACKEND | |
gr.Interface( | |
generate_freak, | |
inputs=None, | |
outputs=gr.Image(), | |
title="Make a little freak!", | |
description="click the button and make a freak!" | |
).launch() |