Spaces:
Sleeping
Sleeping
smaller above the fold
Browse files
app.py
CHANGED
@@ -294,7 +294,7 @@ with st.form("choose_model"):
|
|
294 |
|
295 |
seq_proba = seq_predict_proba(new_pred, xgbr, seq2)
|
296 |
|
297 |
-
st.
|
298 |
|
299 |
green_proba = seq_proba[0]
|
300 |
red_proba = 1 - green_proba
|
@@ -345,11 +345,19 @@ with st.form("choose_model"):
|
|
345 |
prev_close = data.loc[final_row,'Close']
|
346 |
curr_close = data['Close'].iloc[-1]
|
347 |
|
348 |
-
confidence, success, nn = st.columns(3)
|
349 |
|
350 |
-
confidence.metric('Confidence',value=f'{text_cond} {score:.1%}')
|
351 |
-
success.metric('SuccessRate',value=f'{historical_proba:.1%}')
|
352 |
-
nn.metric(f'N{operator}{"" if do_not_play else score_fmt}',value=num_obs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
|
354 |
results = pd.DataFrame(index=[
|
355 |
'PrevClose',
|
@@ -492,6 +500,8 @@ with st.form("choose_model"):
|
|
492 |
f"{len(data.query('Close <= VIX_EM_15_High & Close >= VIX_EM_15_Low')) / len(data):.1%}",
|
493 |
f"{len(data.query('High > VIX_EM_15_High | Low < VIX_EM_15_Low')) / len(data):.1%}"
|
494 |
]
|
|
|
|
|
495 |
|
496 |
tab1, tab2, tab3, tab4 = st.tabs(["๐ค Stats", "โจ New Data", "๐ Historical", "๐ Performance"])
|
497 |
|
|
|
294 |
|
295 |
seq_proba = seq_predict_proba(new_pred, xgbr, seq2)
|
296 |
|
297 |
+
st.info(f'๐ฎ for {option} on {curr_date} ๐๐ฝ', icon="โ
")
|
298 |
|
299 |
green_proba = seq_proba[0]
|
300 |
red_proba = 1 - green_proba
|
|
|
345 |
prev_close = data.loc[final_row,'Close']
|
346 |
curr_close = data['Close'].iloc[-1]
|
347 |
|
348 |
+
# confidence, success, nn = st.columns(3)
|
349 |
|
350 |
+
# confidence.metric('Confidence',value=f'{text_cond} {score:.1%}')
|
351 |
+
# success.metric('SuccessRate',value=f'{historical_proba:.1%}')
|
352 |
+
# nn.metric(f'N{operator}{"" if do_not_play else score_fmt}',value=num_obs)
|
353 |
+
|
354 |
+
top_of_fold = pd.DataFrame(
|
355 |
+
index=[''],
|
356 |
+
data = {
|
357 |
+
'Confidence':[f'{text_cond} {score:.1%}'],
|
358 |
+
'Success':[f'{historical_proba:.1%}'],
|
359 |
+
f'N{operator}{score:.1%}':[num_obs]
|
360 |
+
})
|
361 |
|
362 |
results = pd.DataFrame(index=[
|
363 |
'PrevClose',
|
|
|
500 |
f"{len(data.query('Close <= VIX_EM_15_High & Close >= VIX_EM_15_Low')) / len(data):.1%}",
|
501 |
f"{len(data.query('High > VIX_EM_15_High | Low < VIX_EM_15_Low')) / len(data):.1%}"
|
502 |
]
|
503 |
+
|
504 |
+
st.write(top_of_fold)
|
505 |
|
506 |
tab1, tab2, tab3, tab4 = st.tabs(["๐ค Stats", "โจ New Data", "๐ Historical", "๐ Performance"])
|
507 |
|