Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,985 Bytes
ba4c371 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
"""
Copyright (2023) Bytedance Ltd. and/or its affiliates
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import torch
import torch.nn.functional as F
import math
from detectron2.utils import comm
import open_clip
from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec
@BACKBONE_REGISTRY.register()
class CLIP(Backbone):
def __init__(self, cfg, input_shape):
super().__init__()
model_name = cfg.MODEL.FC_CLIP.CLIP_MODEL_NAME
pretrained= cfg.MODEL.FC_CLIP.CLIP_PRETRAINED_WEIGHTS
# download on local rank 0 first
if comm.get_local_rank() == 0:
open_clip.create_model_and_transforms(model_name, pretrained=pretrained)
comm.synchronize()
self.model_name = model_name
self.pretrained = pretrained
self.clip_model, _, _ = open_clip.create_model_and_transforms(model_name, pretrained=pretrained)
self.text_tokenizer = open_clip.get_tokenizer(model_name)
model_name = model_name.lower()
if 'convnext_' in model_name:
self.model_type = 'convnext'
if '_base' in model_name:
self.output_channels = [128, 128, 256, 512, 1024]
elif '_large' in model_name:
self.output_channels = [192, 192, 384, 768, 1536]
elif '_xxlarge' in model_name:
self.output_channels = [384, 384, 768, 1536, 3072]
elif 'rn' in model_name:
self.model_type = 'resnet'
if model_name.replace('-quickgelu', '') in ['rn50', 'rn101']:
self.output_channels = [64, 256, 512, 1024, 2048]
elif model_name == 'rn50x4':
self.output_channels = [80, 320, 640, 1280, 2560]
elif model_name == 'rn50x16':
self.output_channels = [96, 384, 768, 1536, 3072]
elif model_name == 'rn50x64':
self.output_channels = [128, 512, 1024, 2048, 4096]
self._out_feature_strides = {
"stem": 2,
"res2": 4,
"res3": 8,
"res4": 16,
"res5": 32,
"clip_embedding": -1
}
self._out_feature_channels = {
"stem": self.output_channels[0],
"res2": self.output_channels[1],
"res3": self.output_channels[2],
"res4": self.output_channels[3],
"res5": self.output_channels[4],
"clip_embedding": self.dim_latent
}
self.eval()
self.freeze_everything()
def freeze_everything(self):
for param in self.clip_model.parameters():
param.requires_grad = False
def encode_text(self, text, normalize: bool = False):
cast_dtype = self.clip_model.transformer.get_cast_dtype()
x = self.clip_model.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
x = x + self.clip_model.positional_embedding.to(cast_dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.clip_model.transformer(x, attn_mask=self.clip_model.attn_mask)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.clip_model.ln_final(x) # [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.clip_model.text_projection
return F.normalize(x, dim=-1) if normalize else x
def tokenize_text(self, text):
return self.text_tokenizer(text)
def extract_features(self, x):
return {
'convnext': self.extract_features_convnext,
'resnet': self.extract_features_resnet,
}[self.model_type](x)
def visual_prediction_forward(self, x, masks=None):
return {
'convnext': self.visual_prediction_forward_convnext,
'resnet': self.visual_prediction_forward_resnet,
}[self.model_type](x, masks)
def extract_features_convnext(self, x):
out = {}
x = self.clip_model.visual.trunk.stem(x)
out['stem'] = x.contiguous() # os4
for i in range(4):
x = self.clip_model.visual.trunk.stages[i](x)
out[f'res{i+2}'] = x.contiguous() # res 2 (os4), 3 (os8), 4 (os16), 5 (os32)
x = self.clip_model.visual.trunk.norm_pre(x)
out['clip_vis_dense'] = x.contiguous()
return out
def extract_features_resnet(self, x):
out = {}
x = self.clip_model.visual.act1(self.clip_model.visual.bn1(self.clip_model.visual.conv1(x)))
x = self.clip_model.visual.act2(self.clip_model.visual.bn2(self.clip_model.visual.conv2(x)))
x = self.clip_model.visual.act3(self.clip_model.visual.bn3(self.clip_model.visual.conv3(x)))
out['stem'] = x.contiguous() # os2
x = self.clip_model.visual.avgpool(x)
x = self.clip_model.visual.layer1(x)
out['res2'] = x.contiguous() # os4
x = self.clip_model.visual.layer2(x)
out['res3'] = x.contiguous() # os8
x = self.clip_model.visual.layer3(x)
out['res4'] = x.contiguous() # os16
x = self.clip_model.visual.layer4(x)
out['res5'] = x.contiguous() # os32
out['clip_vis_dense'] = x
return out
def visual_prediction_forward_convnext(self, x, masks):
batch, num_query, channel = x.shape
x = x.reshape(batch*num_query, channel, 1, 1) # fake 2D input
x = self.clip_model.visual.trunk.head(x)
x = self.clip_model.visual.head(x)
return x.view(batch, num_query, x.shape[-1]) # B x num_queries x 640
def visual_prediction_forward_resnet(self, x, masks):
batch, channel, height, width = x.shape
if masks.shape[-2] != height or masks.shape[-1] != width:
masks = F.inteprolate(masks, size=(height, width), mode='bilinear', align_corners=False)
num_masks = masks.shape[1]
positional_embedding = self.clip_model.visual.attnpool.positional_embedding.to(x.dtype)
spatial_pos_embed = positional_embedding[1:, None, :] # HW x 1 x C
orig_size = int(math.sqrt(spatial_pos_embed.shape[0]))
spatial_pos_embed = spatial_pos_embed.permute(1, 2, 0).reshape(1, channel, orig_size, orig_size)
spatial_pos_embed = F.interpolate(spatial_pos_embed, size=(height, width), mode='bilinear', align_corners=False) # 1 x C x H x W
spatial_pos_embed = spatial_pos_embed.permute(2, 3, 0, 1).reshape(height*width, 1, channel)
x = x.reshape(batch, channel, height * width).permute(2, 0, 1) # BCHW -> (HW)BC
key_value = x + spatial_pos_embed
masks = masks.reshape(batch, num_masks, height * width)
masks = (masks > 0).to(masks.dtype)
query = x.mean(0, keepdim=True) + positional_embedding[:1, None, :]
query = query.repeat_interleave(num_masks, dim=0)
attn_mask = masks < 0.5
attn_mask = attn_mask.unsqueeze(1).expand(-1, self.clip_model.visual.attnpool.num_heads, -1, -1)
attn_mask = attn_mask.reshape(batch * self.clip_model.visual.attnpool.num_heads,
query.shape[0], key_value.shape[0])
x = F.multi_head_attention_forward(
query=query, key=key_value, value=key_value,
embed_dim_to_check=key_value.shape[-1],
num_heads=self.clip_model.visual.attnpool.num_heads,
q_proj_weight=self.clip_model.visual.attnpool.q_proj.weight,
k_proj_weight=self.clip_model.visual.attnpool.k_proj.weight,
v_proj_weight=self.clip_model.visual.attnpool.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat([self.clip_model.visual.attnpool.q_proj.bias,
self.clip_model.visual.attnpool.k_proj.bias,
self.clip_model.visual.attnpool.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0.,
out_proj_weight=self.clip_model.visual.attnpool.c_proj.weight,
out_proj_bias=self.clip_model.visual.attnpool.c_proj.bias,
use_separate_proj_weight=True,
training=self.clip_model.visual.attnpool.training,
need_weights=False,
attn_mask=attn_mask
)[0].permute(1, 0, 2) # B x N x C
return x
def get_text_classifier(self, text_list, device):
self.eval()
with torch.no_grad():
# reference for templates: https://github.com/mlfoundations/open_clip/blob/91f6cce16b7bee90b3b5d38ca305b5b3b67cc200/src/training/imagenet_zeroshot_data.py
text_tokens = self.tokenize_text(text_list)
text_tokens = text_tokens.to(device)
# we return un-normalized text feature.
text_features = self.encode_text(text_tokens, normalize=False)
return text_features
def forward(self, x):
self.eval()
with torch.no_grad():
return self.extract_features(x)
@property
def dim_latent(self):
return self.clip_model.text_projection.shape[-1]
def output_shape(self):
return {
name: ShapeSpec(
channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
)
for name in ["stem", "res2", "res3", "res4", "res5", "clip_embedding"]
}
@property
def size_divisibility(self):
return -1 |