File size: 9,985 Bytes
ba4c371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
"""
Copyright (2023) Bytedance Ltd. and/or its affiliates

Licensed under the Apache License, Version 2.0 (the "License"); 
you may not use this file except in compliance with the License. 
You may obtain a copy of the License at 

    http://www.apache.org/licenses/LICENSE-2.0 

Unless required by applicable law or agreed to in writing, software 
distributed under the License is distributed on an "AS IS" BASIS, 
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
See the License for the specific language governing permissions and 
limitations under the License. 
"""

import torch
import torch.nn.functional as F
import math
from detectron2.utils import comm

import open_clip

from detectron2.modeling import BACKBONE_REGISTRY, Backbone, ShapeSpec

@BACKBONE_REGISTRY.register()
class CLIP(Backbone):
    def __init__(self, cfg, input_shape):
        super().__init__()
        model_name = cfg.MODEL.FC_CLIP.CLIP_MODEL_NAME
        pretrained= cfg.MODEL.FC_CLIP.CLIP_PRETRAINED_WEIGHTS
        # download on local rank 0 first
        if comm.get_local_rank() == 0:
            open_clip.create_model_and_transforms(model_name, pretrained=pretrained)
        comm.synchronize()

        self.model_name = model_name
        self.pretrained = pretrained

        self.clip_model, _, _ = open_clip.create_model_and_transforms(model_name, pretrained=pretrained)
        self.text_tokenizer = open_clip.get_tokenizer(model_name)

        model_name = model_name.lower()
        if 'convnext_' in model_name:
            self.model_type = 'convnext'
            if '_base' in model_name:
                self.output_channels = [128, 128, 256, 512, 1024]
            elif '_large' in model_name:
                self.output_channels = [192, 192, 384, 768, 1536]
            elif '_xxlarge' in model_name:
                self.output_channels = [384, 384, 768, 1536, 3072]
        
        elif 'rn' in model_name:
            self.model_type = 'resnet'
            if model_name.replace('-quickgelu', '') in ['rn50', 'rn101']:
                self.output_channels = [64, 256, 512, 1024, 2048]
            elif model_name == 'rn50x4':
                self.output_channels = [80, 320, 640, 1280, 2560]
            elif model_name == 'rn50x16':
                self.output_channels = [96, 384, 768, 1536, 3072]
            elif model_name == 'rn50x64':
                self.output_channels = [128, 512, 1024, 2048, 4096]

        self._out_feature_strides = {
            "stem": 2,
            "res2": 4,
            "res3": 8,
            "res4": 16,
            "res5": 32,
            "clip_embedding": -1
        }
        self._out_feature_channels = {
            "stem": self.output_channels[0],
            "res2": self.output_channels[1],
            "res3": self.output_channels[2],
            "res4": self.output_channels[3],
            "res5": self.output_channels[4],
            "clip_embedding": self.dim_latent
        }

        self.eval()
        self.freeze_everything()

    def freeze_everything(self):
        for param in self.clip_model.parameters():
            param.requires_grad = False

    def encode_text(self, text, normalize: bool = False):
        cast_dtype = self.clip_model.transformer.get_cast_dtype()

        x = self.clip_model.token_embedding(text).to(cast_dtype)  # [batch_size, n_ctx, d_model]

        x = x + self.clip_model.positional_embedding.to(cast_dtype)
        x = x.permute(1, 0, 2)  # NLD -> LND
        x = self.clip_model.transformer(x, attn_mask=self.clip_model.attn_mask)
        x = x.permute(1, 0, 2)  # LND -> NLD
        x = self.clip_model.ln_final(x)  # [batch_size, n_ctx, transformer.width]
        # take features from the eot embedding (eot_token is the highest number in each sequence)
        x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.clip_model.text_projection
        return F.normalize(x, dim=-1) if normalize else x

    def tokenize_text(self, text):
        return self.text_tokenizer(text)

    def extract_features(self, x):
        return {
            'convnext': self.extract_features_convnext,
            'resnet': self.extract_features_resnet,
        }[self.model_type](x)
    
    def visual_prediction_forward(self, x, masks=None):
        return {
            'convnext': self.visual_prediction_forward_convnext,
            'resnet': self.visual_prediction_forward_resnet,
        }[self.model_type](x, masks)

    def extract_features_convnext(self, x):
        out = {}
        x = self.clip_model.visual.trunk.stem(x)
        out['stem'] = x.contiguous() # os4
        for i in range(4):
            x = self.clip_model.visual.trunk.stages[i](x)
            out[f'res{i+2}'] = x.contiguous() # res 2 (os4), 3 (os8), 4 (os16), 5 (os32)
        
        x = self.clip_model.visual.trunk.norm_pre(x)
        out['clip_vis_dense'] = x.contiguous()
        return out
    
    def extract_features_resnet(self, x):
        out = {}
        x = self.clip_model.visual.act1(self.clip_model.visual.bn1(self.clip_model.visual.conv1(x)))
        x = self.clip_model.visual.act2(self.clip_model.visual.bn2(self.clip_model.visual.conv2(x)))
        x = self.clip_model.visual.act3(self.clip_model.visual.bn3(self.clip_model.visual.conv3(x)))
        out['stem'] = x.contiguous() # os2
        x = self.clip_model.visual.avgpool(x)
        x = self.clip_model.visual.layer1(x)
        out['res2'] = x.contiguous() # os4
        x = self.clip_model.visual.layer2(x)
        out['res3'] = x.contiguous() # os8
        x = self.clip_model.visual.layer3(x)
        out['res4'] = x.contiguous() # os16
        x = self.clip_model.visual.layer4(x)
        out['res5'] = x.contiguous() # os32
        out['clip_vis_dense'] = x
        return out

    def visual_prediction_forward_convnext(self, x, masks):
        batch, num_query, channel = x.shape
        x = x.reshape(batch*num_query, channel, 1, 1) # fake 2D input
        x = self.clip_model.visual.trunk.head(x)
        x = self.clip_model.visual.head(x)
        return x.view(batch, num_query, x.shape[-1]) # B x num_queries x 640

    def visual_prediction_forward_resnet(self, x, masks):
        batch, channel, height, width = x.shape
        if masks.shape[-2] != height or masks.shape[-1] != width:
            masks = F.inteprolate(masks, size=(height, width), mode='bilinear', align_corners=False)
        num_masks = masks.shape[1]

        positional_embedding = self.clip_model.visual.attnpool.positional_embedding.to(x.dtype)
        spatial_pos_embed = positional_embedding[1:, None, :] # HW x 1 x C
        orig_size = int(math.sqrt(spatial_pos_embed.shape[0]))
        spatial_pos_embed = spatial_pos_embed.permute(1, 2, 0).reshape(1, channel, orig_size, orig_size)
        spatial_pos_embed = F.interpolate(spatial_pos_embed, size=(height, width), mode='bilinear', align_corners=False) # 1 x C x H x W
        spatial_pos_embed = spatial_pos_embed.permute(2, 3, 0, 1).reshape(height*width, 1, channel)
        x = x.reshape(batch, channel, height * width).permute(2, 0, 1)  # BCHW -> (HW)BC
        key_value = x + spatial_pos_embed
        
        masks = masks.reshape(batch, num_masks, height * width)
        masks = (masks > 0).to(masks.dtype)
        query = x.mean(0, keepdim=True) + positional_embedding[:1, None, :]
        query = query.repeat_interleave(num_masks, dim=0)

        attn_mask = masks < 0.5
        attn_mask = attn_mask.unsqueeze(1).expand(-1, self.clip_model.visual.attnpool.num_heads, -1, -1)
        attn_mask = attn_mask.reshape(batch * self.clip_model.visual.attnpool.num_heads,
                                    query.shape[0], key_value.shape[0])

        x = F.multi_head_attention_forward(
            query=query, key=key_value, value=key_value,
            embed_dim_to_check=key_value.shape[-1],
            num_heads=self.clip_model.visual.attnpool.num_heads,
            q_proj_weight=self.clip_model.visual.attnpool.q_proj.weight,
            k_proj_weight=self.clip_model.visual.attnpool.k_proj.weight,
            v_proj_weight=self.clip_model.visual.attnpool.v_proj.weight,
            in_proj_weight=None,
            in_proj_bias=torch.cat([self.clip_model.visual.attnpool.q_proj.bias,
                                    self.clip_model.visual.attnpool.k_proj.bias,
                                    self.clip_model.visual.attnpool.v_proj.bias]),
            bias_k=None,
            bias_v=None,
            add_zero_attn=False,
            dropout_p=0.,
            out_proj_weight=self.clip_model.visual.attnpool.c_proj.weight,
            out_proj_bias=self.clip_model.visual.attnpool.c_proj.bias,
            use_separate_proj_weight=True,
            training=self.clip_model.visual.attnpool.training,
            need_weights=False,
            attn_mask=attn_mask
        )[0].permute(1, 0, 2) # B x N x C

        return x

    def get_text_classifier(self, text_list, device):
        self.eval()
        with torch.no_grad():
            # reference for templates: https://github.com/mlfoundations/open_clip/blob/91f6cce16b7bee90b3b5d38ca305b5b3b67cc200/src/training/imagenet_zeroshot_data.py
            text_tokens = self.tokenize_text(text_list)
            text_tokens = text_tokens.to(device)
            # we return un-normalized text feature.
            text_features = self.encode_text(text_tokens, normalize=False)
            return text_features

    def forward(self, x):
        self.eval()
        with torch.no_grad():
            return self.extract_features(x)
    
    @property
    def dim_latent(self):
        return self.clip_model.text_projection.shape[-1]
    
    def output_shape(self):
        return {
            name: ShapeSpec(
                channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
            )
            for name in ["stem", "res2", "res3", "res4", "res5", "clip_embedding"]
        }

    @property
    def size_divisibility(self):
        return -1