Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,901 Bytes
ba4c371 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
# Copyright (c) 2024 ByteDance. All Rights Reserved.
# Part of the code is from https://github.com/xingyizhou/UniDet/blob/master/projects/UniDet/unidet/data/multi_dataset_dataloader.py (Apache-2.0 License)
import copy
import logging
import numpy as np
import operator
import torch
import torch.utils.data
import json
from detectron2.utils.comm import get_world_size
from detectron2.utils.logger import _log_api_usage, log_first_n
from detectron2.config import configurable
from detectron2.data import samplers
from torch.utils.data.sampler import BatchSampler, Sampler
from detectron2.data.common import DatasetFromList, MapDataset
from detectron2.data.dataset_mapper import DatasetMapper
from detectron2.data.build import get_detection_dataset_dicts, build_batch_data_loader
from detectron2.data.samplers import TrainingSampler, RepeatFactorTrainingSampler
from detectron2.data.build import worker_init_reset_seed, print_instances_class_histogram
from detectron2.data.build import filter_images_with_only_crowd_annotations
from detectron2.data.build import filter_images_with_few_keypoints
from detectron2.data.build import check_metadata_consistency
from detectron2.data.catalog import MetadataCatalog, DatasetCatalog
from detectron2.utils import comm
import itertools
import math
from collections import defaultdict
from typing import Optional
def _custom_train_loader_from_config(cfg, mapper=None, *, dataset=None, sampler=None):
sampler_name = cfg.DATALOADER.SAMPLER_TRAIN # "MultiDatasetSampler"
if 'MultiDataset' in sampler_name: # True
dataset_dicts = get_detection_dataset_dicts_with_source(
cfg.DATASETS.TRAIN,
filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
if cfg.MODEL.KEYPOINT_ON else 0,
proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
)
else: # False
dataset_dicts = get_detection_dataset_dicts(
cfg.DATASETS.TRAIN,
filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
if cfg.MODEL.KEYPOINT_ON else 0,
proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
)
if mapper is None: # False
mapper = DatasetMapper(cfg, True)
if sampler is not None:
pass
elif sampler_name == "TrainingSampler": # False
sampler = TrainingSampler(len(dataset))
elif sampler_name == "MultiDatasetSampler": # True
sampler = MultiDatasetSampler(
dataset_dicts,
dataset_ratio = cfg.DATALOADER.DATASET_RATIO,
use_rfs = cfg.DATALOADER.USE_RFS,
dataset_ann = cfg.DATALOADER.DATASET_ANN,
repeat_threshold = cfg.DATALOADER.REPEAT_THRESHOLD,
)
elif sampler_name == "RepeatFactorTrainingSampler": # False
repeat_factors = RepeatFactorTrainingSampler.repeat_factors_from_category_frequency(
dataset_dicts, cfg.DATALOADER.REPEAT_THRESHOLD
)
sampler = RepeatFactorTrainingSampler(repeat_factors)
else:
raise ValueError("Unknown training sampler: {}".format(sampler_name))
return {
"dataset": dataset_dicts,
"sampler": sampler,
"mapper": mapper,
"total_batch_size": cfg.SOLVER.IMS_PER_BATCH, # 64
"aspect_ratio_grouping": cfg.DATALOADER.ASPECT_RATIO_GROUPING,
"num_workers": cfg.DATALOADER.NUM_WORKERS, # 8
'multi_dataset_grouping': cfg.DATALOADER.MULTI_DATASET_GROUPING, # True
'use_diff_bs_size': cfg.DATALOADER.USE_DIFF_BS_SIZE, # True
'dataset_bs': cfg.DATALOADER.DATASET_BS, # [8, 32]
'num_datasets': len(cfg.DATASETS.TRAIN) # 2
}
@configurable(from_config=_custom_train_loader_from_config)
def build_custom_train_loader(
dataset, *, mapper, sampler,
total_batch_size=16, # 64
aspect_ratio_grouping=True,
num_workers=0, # 8
num_datasets=1, # 2
multi_dataset_grouping=False, # True
use_diff_bs_size=False, # True
dataset_bs=[] # [8, 32]
):
"""
Modified from detectron2.data.build.build_custom_train_loader, but supports
different samplers
"""
if isinstance(dataset, list):
dataset = DatasetFromList(dataset, copy=False)
if mapper is not None: # True
dataset = MapDataset(dataset, mapper)
if sampler is None: # False
sampler = TrainingSampler(len(dataset))
assert isinstance(sampler, torch.utils.data.sampler.Sampler)
if multi_dataset_grouping: # True
return build_multi_dataset_batch_data_loader(
use_diff_bs_size,
dataset_bs,
dataset,
sampler,
total_batch_size,
num_datasets=num_datasets,
num_workers=num_workers,
)
else: # False
return build_batch_data_loader(
dataset,
sampler,
total_batch_size,
aspect_ratio_grouping=aspect_ratio_grouping,
num_workers=num_workers,
)
def build_multi_dataset_batch_data_loader(
use_diff_bs_size, dataset_bs,
dataset, sampler, total_batch_size, num_datasets, num_workers=0
):
"""
"""
world_size = get_world_size()
assert (
total_batch_size > 0 and total_batch_size % world_size == 0
), "Total batch size ({}) must be divisible by the number of gpus ({}).".format(
total_batch_size, world_size
)
batch_size = total_batch_size // world_size
data_loader = torch.utils.data.DataLoader(
dataset,
sampler=sampler,
num_workers=num_workers,
batch_sampler=None,
collate_fn=operator.itemgetter(0), # don't batch, but yield individual elements
worker_init_fn=worker_init_reset_seed,
) # yield individual mapped dict
if use_diff_bs_size:
return DIFFMDAspectRatioGroupedDataset(
data_loader, dataset_bs, num_datasets)
else:
return MDAspectRatioGroupedDataset(
data_loader, batch_size, num_datasets)
def get_detection_dataset_dicts_with_source(
dataset_names, filter_empty=True, min_keypoints=0, proposal_files=None
):
assert len(dataset_names)
dataset_dicts = [DatasetCatalog.get(dataset_name) for dataset_name in dataset_names]
for dataset_name, dicts in zip(dataset_names, dataset_dicts):
assert len(dicts), "Dataset '{}' is empty!".format(dataset_name)
for source_id, (dataset_name, dicts) in \
enumerate(zip(dataset_names, dataset_dicts)):
assert len(dicts), "Dataset '{}' is empty!".format(dataset_name)
for d in dicts:
d['dataset_source'] = source_id # add "dataset_source" to original dict
if "annotations" in dicts[0]:
try:
class_names = MetadataCatalog.get(dataset_name).thing_classes
check_metadata_consistency("thing_classes", dataset_name)
print_instances_class_histogram(dicts, class_names)
except AttributeError: # class names are not available for this dataset
pass
assert proposal_files is None
dataset_dicts = list(itertools.chain.from_iterable(dataset_dicts)) # connect multiple iterable objects to one
has_instances = "annotations" in dataset_dicts[0]
if filter_empty and has_instances:
dataset_dicts = filter_images_with_only_crowd_annotations(dataset_dicts)
if min_keypoints > 0 and has_instances:
dataset_dicts = filter_images_with_few_keypoints(dataset_dicts, min_keypoints)
return dataset_dicts
class MultiDatasetSampler(Sampler):
def __init__(
self,
dataset_dicts,
dataset_ratio,
use_rfs, # [True, False]
dataset_ann,
repeat_threshold=0.001,
seed: Optional[int] = None,
):
"""
"""
sizes = [0 for _ in range(len(dataset_ratio))]
for d in dataset_dicts:
sizes[d['dataset_source']] += 1 # size of each dataset
print('dataset sizes', sizes)
self.sizes = sizes
assert len(dataset_ratio) == len(sizes), \
'length of dataset ratio {} should be equal to number if dataset {}'.format(
len(dataset_ratio), len(sizes)
)
if seed is None:
seed = comm.shared_random_seed() # seed shared across all GPUs
self._seed = int(seed)
self._rank = comm.get_rank()
self._world_size = comm.get_world_size()
self.dataset_ids = torch.tensor(
[d['dataset_source'] for d in dataset_dicts], dtype=torch.long)
dataset_weight = [torch.ones(s) * max(sizes) / s * r / sum(dataset_ratio) \
for i, (r, s) in enumerate(zip(dataset_ratio, sizes))]
dataset_weight = torch.cat(dataset_weight)
rfs_factors = []
st = 0
for i, s in enumerate(sizes):
if use_rfs[i]:
if dataset_ann[i] == 'box':
rfs_func = RepeatFactorTrainingSampler.repeat_factors_from_category_frequency
else:
rfs_func = repeat_factors_from_tag_frequency
rfs_factor = rfs_func(
dataset_dicts[st: st + s],
repeat_thresh=repeat_threshold)
rfs_factor = rfs_factor * (s / rfs_factor.sum())
else:
rfs_factor = torch.ones(s)
rfs_factors.append(rfs_factor)
st = st + s
rfs_factors = torch.cat(rfs_factors)
self.weights = dataset_weight * rfs_factors # weights for each element in the dataset_dict
self.sample_epoch_size = len(self.weights)
def __iter__(self):
start = self._rank
yield from itertools.islice(
self._infinite_indices(), start, None, self._world_size) # itertools.islice(iterable, start, stop[, step])
def _infinite_indices(self):
g = torch.Generator()
g.manual_seed(self._seed)
while True:
ids = torch.multinomial(
self.weights, self.sample_epoch_size, generator=g,
replacement=True) # randomly sample according to the given weights
nums = [(self.dataset_ids[ids] == i).sum().int().item() \
for i in range(len(self.sizes))]
yield from ids
class MDAspectRatioGroupedDataset(torch.utils.data.IterableDataset):
def __init__(self, dataset, batch_size, num_datasets):
"""
"""
self.dataset = dataset
self.batch_size = batch_size
self._buckets = [[] for _ in range(2 * num_datasets)] # there are (2 x num_datasets) types of data. For each dataset, there are two types: w>h or w<=h
def __iter__(self):
for d in self.dataset:
w, h = d["width"], d["height"]
aspect_ratio_bucket_id = 0 if w > h else 1
bucket_id = d['dataset_source'] * 2 + aspect_ratio_bucket_id
bucket = self._buckets[bucket_id]
bucket.append(d)
if len(bucket) == self.batch_size:
yield bucket[:]
del bucket[:]
class DIFFMDAspectRatioGroupedDataset(torch.utils.data.IterableDataset):
def __init__(self, dataset, batch_sizes, num_datasets):
"""
"""
self.dataset = dataset
self.batch_sizes = batch_sizes
self._buckets = [[] for _ in range(2 * num_datasets)]
def __iter__(self):
for d in self.dataset:
w, h = d["width"], d["height"]
aspect_ratio_bucket_id = 0 if w > h else 1
bucket_id = d['dataset_source'] * 2 + aspect_ratio_bucket_id
bucket = self._buckets[bucket_id]
bucket.append(d)
if len(bucket) == self.batch_sizes[d['dataset_source']]: # allow different batchsizes
yield bucket[:]
del bucket[:]
def repeat_factors_from_tag_frequency(dataset_dicts, repeat_thresh):
"""
"""
category_freq = defaultdict(int)
for dataset_dict in dataset_dicts:
cat_ids = dataset_dict['pos_category_ids']
for cat_id in cat_ids:
category_freq[cat_id] += 1
num_images = len(dataset_dicts)
for k, v in category_freq.items():
category_freq[k] = v / num_images
category_rep = {
cat_id: max(1.0, math.sqrt(repeat_thresh / cat_freq))
for cat_id, cat_freq in category_freq.items()
}
rep_factors = []
for dataset_dict in dataset_dicts:
cat_ids = dataset_dict['pos_category_ids']
rep_factor = max({category_rep[cat_id] for cat_id in cat_ids}, default=1.0)
rep_factors.append(rep_factor)
return torch.tensor(rep_factors, dtype=torch.float32) |