File size: 12,901 Bytes
ba4c371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# Copyright (c) 2024 ByteDance. All Rights Reserved.
# Part of the code is from https://github.com/xingyizhou/UniDet/blob/master/projects/UniDet/unidet/data/multi_dataset_dataloader.py (Apache-2.0 License)
import copy
import logging
import numpy as np
import operator
import torch
import torch.utils.data
import json
from detectron2.utils.comm import get_world_size
from detectron2.utils.logger import _log_api_usage, log_first_n

from detectron2.config import configurable
from detectron2.data import samplers
from torch.utils.data.sampler import BatchSampler, Sampler
from detectron2.data.common import DatasetFromList, MapDataset
from detectron2.data.dataset_mapper import DatasetMapper
from detectron2.data.build import get_detection_dataset_dicts, build_batch_data_loader
from detectron2.data.samplers import TrainingSampler, RepeatFactorTrainingSampler
from detectron2.data.build import worker_init_reset_seed, print_instances_class_histogram
from detectron2.data.build import filter_images_with_only_crowd_annotations
from detectron2.data.build import filter_images_with_few_keypoints
from detectron2.data.build import check_metadata_consistency
from detectron2.data.catalog import MetadataCatalog, DatasetCatalog
from detectron2.utils import comm
import itertools
import math
from collections import defaultdict
from typing import Optional


def _custom_train_loader_from_config(cfg, mapper=None, *, dataset=None, sampler=None):
    sampler_name = cfg.DATALOADER.SAMPLER_TRAIN # "MultiDatasetSampler"
    if 'MultiDataset' in sampler_name: # True
        dataset_dicts = get_detection_dataset_dicts_with_source(
            cfg.DATASETS.TRAIN,
            filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
            min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
            if cfg.MODEL.KEYPOINT_ON else 0,
            proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
        )
    else: # False
        dataset_dicts = get_detection_dataset_dicts(
            cfg.DATASETS.TRAIN,
            filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
            min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
            if cfg.MODEL.KEYPOINT_ON else 0,
            proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
        )

    if mapper is None: # False
        mapper = DatasetMapper(cfg, True)

    if sampler is not None:
        pass
    elif sampler_name == "TrainingSampler": # False
        sampler = TrainingSampler(len(dataset))
    elif sampler_name == "MultiDatasetSampler": # True
        sampler = MultiDatasetSampler(
            dataset_dicts,
            dataset_ratio = cfg.DATALOADER.DATASET_RATIO,
            use_rfs = cfg.DATALOADER.USE_RFS,
            dataset_ann = cfg.DATALOADER.DATASET_ANN,
            repeat_threshold = cfg.DATALOADER.REPEAT_THRESHOLD,
        )
    elif sampler_name == "RepeatFactorTrainingSampler": # False
        repeat_factors = RepeatFactorTrainingSampler.repeat_factors_from_category_frequency(
            dataset_dicts, cfg.DATALOADER.REPEAT_THRESHOLD
        )
        sampler = RepeatFactorTrainingSampler(repeat_factors)
    else:
        raise ValueError("Unknown training sampler: {}".format(sampler_name))

    return {
        "dataset": dataset_dicts,
        "sampler": sampler,
        "mapper": mapper,
        "total_batch_size": cfg.SOLVER.IMS_PER_BATCH, # 64
        "aspect_ratio_grouping": cfg.DATALOADER.ASPECT_RATIO_GROUPING,
        "num_workers": cfg.DATALOADER.NUM_WORKERS, # 8
        'multi_dataset_grouping': cfg.DATALOADER.MULTI_DATASET_GROUPING, # True
        'use_diff_bs_size': cfg.DATALOADER.USE_DIFF_BS_SIZE, # True
        'dataset_bs': cfg.DATALOADER.DATASET_BS, # [8, 32]
        'num_datasets': len(cfg.DATASETS.TRAIN) # 2
    }


@configurable(from_config=_custom_train_loader_from_config)
def build_custom_train_loader(
        dataset, *, mapper, sampler, 
        total_batch_size=16, # 64
        aspect_ratio_grouping=True, 
        num_workers=0, # 8
        num_datasets=1, # 2
        multi_dataset_grouping=False, # True
        use_diff_bs_size=False, # True
        dataset_bs=[] # [8, 32]
    ):
    """
    Modified from detectron2.data.build.build_custom_train_loader, but supports
    different samplers
    """
    if isinstance(dataset, list):
        dataset = DatasetFromList(dataset, copy=False)
    if mapper is not None: # True
        dataset = MapDataset(dataset, mapper)
    if sampler is None: # False
        sampler = TrainingSampler(len(dataset))
    assert isinstance(sampler, torch.utils.data.sampler.Sampler)
    if multi_dataset_grouping: # True
        return build_multi_dataset_batch_data_loader(
            use_diff_bs_size,
            dataset_bs,
            dataset,
            sampler,
            total_batch_size,
            num_datasets=num_datasets,
            num_workers=num_workers,
        )
    else: # False
        return build_batch_data_loader(
            dataset,
            sampler,
            total_batch_size,
            aspect_ratio_grouping=aspect_ratio_grouping,
            num_workers=num_workers,
        )


def build_multi_dataset_batch_data_loader(
    use_diff_bs_size, dataset_bs,
    dataset, sampler, total_batch_size, num_datasets, num_workers=0
):
    """
    """
    world_size = get_world_size()
    assert (
        total_batch_size > 0 and total_batch_size % world_size == 0
    ), "Total batch size ({}) must be divisible by the number of gpus ({}).".format(
        total_batch_size, world_size
    )

    batch_size = total_batch_size // world_size
    data_loader = torch.utils.data.DataLoader(
        dataset,
        sampler=sampler,
        num_workers=num_workers,
        batch_sampler=None,
        collate_fn=operator.itemgetter(0),  # don't batch, but yield individual elements
        worker_init_fn=worker_init_reset_seed,
    )  # yield individual mapped dict
    if use_diff_bs_size:
        return DIFFMDAspectRatioGroupedDataset(
            data_loader, dataset_bs, num_datasets)
    else:
        return MDAspectRatioGroupedDataset(
            data_loader, batch_size, num_datasets)


def get_detection_dataset_dicts_with_source(
    dataset_names, filter_empty=True, min_keypoints=0, proposal_files=None
):
    assert len(dataset_names)
    dataset_dicts = [DatasetCatalog.get(dataset_name) for dataset_name in dataset_names]
    for dataset_name, dicts in zip(dataset_names, dataset_dicts):
        assert len(dicts), "Dataset '{}' is empty!".format(dataset_name)
    
    for source_id, (dataset_name, dicts) in \
        enumerate(zip(dataset_names, dataset_dicts)):
        assert len(dicts), "Dataset '{}' is empty!".format(dataset_name)
        for d in dicts:
            d['dataset_source'] = source_id # add "dataset_source" to original dict

        if "annotations" in dicts[0]:
            try:
                class_names = MetadataCatalog.get(dataset_name).thing_classes
                check_metadata_consistency("thing_classes", dataset_name)
                print_instances_class_histogram(dicts, class_names)
            except AttributeError:  # class names are not available for this dataset
                pass

    assert proposal_files is None

    dataset_dicts = list(itertools.chain.from_iterable(dataset_dicts)) # connect multiple iterable objects to one

    has_instances = "annotations" in dataset_dicts[0]
    if filter_empty and has_instances:
        dataset_dicts = filter_images_with_only_crowd_annotations(dataset_dicts)
    if min_keypoints > 0 and has_instances:
        dataset_dicts = filter_images_with_few_keypoints(dataset_dicts, min_keypoints)

    return dataset_dicts


class MultiDatasetSampler(Sampler):
    def __init__(
        self, 
        dataset_dicts, 
        dataset_ratio,
        use_rfs, # [True, False]
        dataset_ann,
        repeat_threshold=0.001,
        seed: Optional[int] = None,
        ):
        """
        """
        sizes = [0 for _ in range(len(dataset_ratio))]
        for d in dataset_dicts:
            sizes[d['dataset_source']] += 1 # size of each dataset
        print('dataset sizes', sizes)
        self.sizes = sizes
        assert len(dataset_ratio) == len(sizes), \
            'length of dataset ratio {} should be equal to number if dataset {}'.format(
                len(dataset_ratio), len(sizes)
            )
        if seed is None:
            seed = comm.shared_random_seed() # seed shared across all GPUs
        self._seed = int(seed)
        self._rank = comm.get_rank()
        self._world_size = comm.get_world_size()
        
        self.dataset_ids =  torch.tensor(
            [d['dataset_source'] for d in dataset_dicts], dtype=torch.long)

        dataset_weight = [torch.ones(s) * max(sizes) / s * r / sum(dataset_ratio) \
            for i, (r, s) in enumerate(zip(dataset_ratio, sizes))]
        dataset_weight = torch.cat(dataset_weight)
        
        rfs_factors = []
        st = 0
        for i, s in enumerate(sizes):
            if use_rfs[i]:
                if dataset_ann[i] == 'box':
                    rfs_func = RepeatFactorTrainingSampler.repeat_factors_from_category_frequency
                else:
                    rfs_func = repeat_factors_from_tag_frequency
                rfs_factor = rfs_func(
                    dataset_dicts[st: st + s],
                    repeat_thresh=repeat_threshold)
                rfs_factor = rfs_factor * (s / rfs_factor.sum())
            else:
                rfs_factor = torch.ones(s)
            rfs_factors.append(rfs_factor)
            st = st + s
        rfs_factors = torch.cat(rfs_factors)

        self.weights = dataset_weight * rfs_factors # weights for each element in the dataset_dict
        self.sample_epoch_size = len(self.weights)

    def __iter__(self):
        start = self._rank
        yield from itertools.islice(
            self._infinite_indices(), start, None, self._world_size) # itertools.islice(iterable, start, stop[, step])


    def _infinite_indices(self):
        g = torch.Generator()
        g.manual_seed(self._seed)
        while True:
            ids = torch.multinomial(
                self.weights, self.sample_epoch_size, generator=g, 
                replacement=True) # randomly sample according to the given weights
            nums = [(self.dataset_ids[ids] == i).sum().int().item() \
                for i in range(len(self.sizes))]
            yield from ids


class MDAspectRatioGroupedDataset(torch.utils.data.IterableDataset):
    def __init__(self, dataset, batch_size, num_datasets):
        """
        """
        self.dataset = dataset
        self.batch_size = batch_size
        self._buckets = [[] for _ in range(2 * num_datasets)] # there are (2 x num_datasets) types of data. For each dataset, there are two types: w>h or w<=h

    def __iter__(self):
        for d in self.dataset:
            w, h = d["width"], d["height"]
            aspect_ratio_bucket_id = 0 if w > h else 1
            bucket_id = d['dataset_source'] * 2 + aspect_ratio_bucket_id
            bucket = self._buckets[bucket_id]
            bucket.append(d)
            if len(bucket) == self.batch_size:
                yield bucket[:]
                del bucket[:]


class DIFFMDAspectRatioGroupedDataset(torch.utils.data.IterableDataset):
    def __init__(self, dataset, batch_sizes, num_datasets):
        """
        """
        self.dataset = dataset
        self.batch_sizes = batch_sizes
        self._buckets = [[] for _ in range(2 * num_datasets)]

    def __iter__(self):
        for d in self.dataset:
            w, h = d["width"], d["height"]
            aspect_ratio_bucket_id = 0 if w > h else 1
            bucket_id = d['dataset_source'] * 2 + aspect_ratio_bucket_id
            bucket = self._buckets[bucket_id]
            bucket.append(d)
            if len(bucket) == self.batch_sizes[d['dataset_source']]: # allow different batchsizes
                yield bucket[:]
                del bucket[:]


def repeat_factors_from_tag_frequency(dataset_dicts, repeat_thresh):
    """
    """
    category_freq = defaultdict(int)
    for dataset_dict in dataset_dicts:
        cat_ids = dataset_dict['pos_category_ids']
        for cat_id in cat_ids:
            category_freq[cat_id] += 1
    num_images = len(dataset_dicts)
    for k, v in category_freq.items():
        category_freq[k] = v / num_images

    category_rep = {
        cat_id: max(1.0, math.sqrt(repeat_thresh / cat_freq))
        for cat_id, cat_freq in category_freq.items()
    }

    rep_factors = []
    for dataset_dict in dataset_dicts:
        cat_ids = dataset_dict['pos_category_ids']
        rep_factor = max({category_rep[cat_id] for cat_id in cat_ids}, default=1.0)
        rep_factors.append(rep_factor)

    return torch.tensor(rep_factors, dtype=torch.float32)