File size: 16,011 Bytes
ba4c371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import numpy as np
import torch
from torch.nn import functional as F
import cv2

from detectron2.data import MetadataCatalog
from detectron2.structures import BitMasks
from detectron2.utils.visualizer import ColorMode, Visualizer

import open_clip
from sam2.build_sam import build_sam2
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
from .modeling.meta_arch.mask_adapter_head import build_mask_adapter
from sam2.sam2_image_predictor import SAM2ImagePredictor


from PIL import Image

PIXEL_MEAN = [122.7709383, 116.7460125, 104.09373615]
PIXEL_STD = [68.5005327, 66.6321579, 70.32316305]

class OpenVocabVisualizer(Visualizer):
    def __init__(self, img_rgb, metadata=None, scale=1.0, instance_mode=ColorMode.IMAGE, class_names=None):
        super().__init__(img_rgb, metadata, scale, instance_mode)
        self.class_names = class_names

    def draw_sem_seg(self, sem_seg, area_threshold=None, alpha=0.6):
        """
        Draw semantic segmentation predictions/labels.
        Args:
            sem_seg (Tensor or ndarray): the segmentation of shape (H, W).
                Each value is the integer label of the pixel.
            area_threshold (int): segments with less than `area_threshold` are not drawn.
            alpha (float): the larger it is, the more opaque the segmentations are.
        Returns:
            output (VisImage): image object with visualizations.
        """
        if isinstance(sem_seg, torch.Tensor):
            sem_seg = sem_seg.numpy()
        labels, areas = np.unique(sem_seg, return_counts=True)
        sorted_idxs = np.argsort(-areas).tolist()
        labels = labels[sorted_idxs]
        class_names = self.class_names if self.class_names is not None else self.metadata.stuff_classes

        for label in filter(lambda l: l < len(class_names), labels):
            try:
                mask_color = [x / 255 for x in self.metadata.stuff_colors[label]]
            except (AttributeError, IndexError):
                mask_color = None

            binary_mask = (sem_seg == label).astype(np.uint8)
            text = class_names[label]
            self.draw_binary_mask(
                binary_mask,
                color=mask_color,
                edge_color=(1.0, 1.0, 240.0 / 255),
                text=text,
                alpha=alpha,
                area_threshold=area_threshold,
            )
        return self.output


class SAMVisualizationDemo(object):
    def __init__(self, cfg, granularity, sam2, clip_model ,mask_adapter, instance_mode=ColorMode.IMAGE, parallel=False,):
        self.metadata = MetadataCatalog.get(
            cfg.DATASETS.TEST[0] if len(cfg.DATASETS.TEST) else "__unused"
        )

        self.cpu_device = torch.device("cpu")
        self.instance_mode = instance_mode

        self.parallel = parallel
        self.granularity = granularity
        
        self.sam2 = sam2
        self.predictor = SAM2AutomaticMaskGenerator(sam2, points_per_batch=16,
                                                pred_iou_thresh=0.8,
                                                stability_score_thresh=0.7,
                                                crop_n_layers=0,
                                                crop_n_points_downscale_factor=2,
                                                min_mask_region_area=100)

        self.clip_model = clip_model
        self.mask_adapter = mask_adapter
        

        
    def extract_features_convnext(self, x):
        out = {}
        x = self.clip_model.visual.trunk.stem(x)
        out['stem'] = x.contiguous() # os4
        for i in range(4):
            x = self.clip_model.visual.trunk.stages[i](x)
            out[f'res{i+2}'] = x.contiguous() # res 2 (os4), 3 (os8), 4 (os16), 5 (os32)
        
        x = self.clip_model.visual.trunk.norm_pre(x)
        out['clip_vis_dense'] = x.contiguous()
        return out
    
    def visual_prediction_forward_convnext(self, x):
        batch, num_query, channel = x.shape
        x = x.reshape(batch*num_query, channel, 1, 1) # fake 2D input
        x = self.clip_model.visual.trunk.head(x)
        x = self.clip_model.visual.head(x)
        return x.view(batch, num_query, x.shape[-1]) # B x num_queries x 640
    
    def visual_prediction_forward_convnext_2d(self, x):
        
        clip_vis_dense = self.clip_model.visual.trunk.head.norm(x)
        clip_vis_dense = self.clip_model.visual.trunk.head.drop(clip_vis_dense.permute(0, 2, 3, 1))
        clip_vis_dense = self.clip_model.visual.head(clip_vis_dense).permute(0, 3, 1, 2)
        
        return clip_vis_dense
    
    def run_on_image(self, ori_image, class_names):
        height, width, _ = ori_image.shape
        if width > height:
            new_width = 896
            new_height = int((new_width / width) * height)
        else:
            new_height = 896
            new_width = int((new_height / height) * width)
        image = cv2.resize(ori_image, (new_width, new_height))
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        ori_image = cv2.cvtColor(ori_image, cv2.COLOR_BGR2RGB)
        visualizer = OpenVocabVisualizer(ori_image, self.metadata, instance_mode=self.instance_mode, class_names=class_names)
        with torch.no_grad():#, torch.cuda.amp.autocast():
            masks = self.predictor.generate(image)
        pred_masks = [masks[i]['segmentation'][None,:,:] for i in range(len(masks))]
        pred_masks = np.row_stack(pred_masks)
        pred_masks = BitMasks(pred_masks)

        image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))

        pixel_mean = torch.tensor(PIXEL_MEAN).view(-1, 1, 1)
        pixel_std = torch.tensor(PIXEL_STD).view(-1, 1, 1)
        
        image = (image - pixel_mean) / pixel_std

        image = image.unsqueeze(0)
        
        if len(class_names) == 1:
            class_names.append('others')
        txts = [f'a photo of {cls_name}' for cls_name in class_names]
        text = open_clip.tokenize(txts)


        with torch.no_grad():
            self.clip_model.cuda()
            text_features = self.clip_model.encode_text(text.cuda())
            text_features /= text_features.norm(dim=-1, keepdim=True)
            
            features = self.extract_features_convnext(image.cuda().float())
            
            clip_feature = features['clip_vis_dense']
            
            clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature)
            
            semantic_activation_maps = self.mask_adapter(clip_vis_dense, pred_masks.tensor.unsqueeze(0).float().cuda())
            
            maps_for_pooling = F.interpolate(semantic_activation_maps, size=clip_feature.shape[-2:],
                                                mode='bilinear', align_corners=False)
            
            B, C = clip_feature.size(0),clip_feature.size(1)
            N = maps_for_pooling.size(1)
            num_instances = N // 16
            maps_for_pooling = F.softmax(F.logsigmoid(maps_for_pooling).view(B, N,-1), dim=-1)
            pooled_clip_feature = torch.bmm(maps_for_pooling, clip_feature.view(B, C, -1).permute(0, 2, 1))
            pooled_clip_feature = self.visual_prediction_forward_convnext(pooled_clip_feature)
            pooled_clip_feature = (pooled_clip_feature.reshape(B,num_instances, 16, -1).mean(dim=-2).contiguous())
                
            class_preds = (100.0 * pooled_clip_feature @ text_features.T).softmax(dim=-1)
        class_preds = class_preds.squeeze(0)
        select_cls = torch.zeros_like(class_preds)

        max_scores, select_mask = torch.max(class_preds, dim=0)
        if len(class_names) == 2 and class_names[-1] == 'others':
            select_mask = select_mask[:-1]
        if self.granularity < 1:
            thr_scores = max_scores * self.granularity
            select_mask = []
            if len(class_names) == 2 and class_names[-1] == 'others':
                thr_scores = thr_scores[:-1]
            for i, thr in enumerate(thr_scores):
                cls_pred = class_preds[:,i]
                locs = torch.where(cls_pred > thr)
                select_mask.extend(locs[0].tolist())
        for idx in select_mask:
            select_cls[idx] = class_preds[idx]
        semseg = torch.einsum("qc,qhw->chw", select_cls.float(), pred_masks.tensor.float().cuda())

        r = semseg
        blank_area = (r[0] == 0)
        pred_mask = r.argmax(dim=0).to('cpu')
        pred_mask[blank_area] = 255
        pred_mask = np.array(pred_mask, dtype=int)
        pred_mask = cv2.resize(pred_mask, (width, height), interpolation=cv2.INTER_NEAREST)

        vis_output = visualizer.draw_sem_seg(
            pred_mask
        )

        return None, vis_output
    

    
class SAMPointVisualizationDemo(object):
    def __init__(self, cfg, granularity, sam2, clip_model ,mask_adapter, instance_mode=ColorMode.IMAGE, parallel=False):
        self.metadata = MetadataCatalog.get(
            cfg.DATASETS.TEST[0] if len(cfg.DATASETS.TEST) else "__unused"
        )

        self.cpu_device = torch.device("cpu")
        self.instance_mode = instance_mode

        self.parallel = parallel
        self.granularity = granularity
        

        self.sam2 = sam2

        self.predictor = SAM2ImagePredictor(sam2)

        self.clip_model = clip_model

        self.mask_adapter = mask_adapter

        
        from .data.datasets import openseg_classes

        COCO_CATEGORIES_pan = openseg_classes.get_coco_categories_with_prompt_eng()
        #COCO_CATEGORIES_seg = openseg_classes.get_coco_stuff_categories_with_prompt_eng()

        thing_classes = [k["name"] for k in COCO_CATEGORIES_pan if k["isthing"] == 1]
        stuff_classes = [k["name"] for k in COCO_CATEGORIES_pan]
        #print(coco_metadata)
        lvis_classes = open("./mask_adapter/data/datasets/lvis_1203_with_prompt_eng.txt", 'r').read().splitlines()
        lvis_classes = [x[x.find(':')+1:] for x in lvis_classes]
                
        self.class_names = thing_classes + stuff_classes + lvis_classes
        self.text_embedding = torch.from_numpy(np.load("./text_embedding/lvis_coco_text_embedding.npy")).to("cuda")
    
        self.class_names = self._load_class_names() 

    def _load_class_names(self):
        from .data.datasets import openseg_classes
        COCO_CATEGORIES_pan = openseg_classes.get_coco_categories_with_prompt_eng()
        thing_classes = [k["name"] for k in COCO_CATEGORIES_pan if k["isthing"] == 1]
        stuff_classes = [k["name"] for k in COCO_CATEGORIES_pan]
        lvis_classes = open("./mask_adapter/data/datasets/lvis_1203_with_prompt_eng.txt", 'r').read().splitlines()
        lvis_classes = [x[x.find(':')+1:] for x in lvis_classes]
        return thing_classes + stuff_classes + lvis_classes


    def extract_features_convnext(self, x):
        out = {}
        x = self.clip_model.visual.trunk.stem(x)
        out['stem'] = x.contiguous() # os4
        for i in range(4):
            x = self.clip_model.visual.trunk.stages[i](x)
            out[f'res{i+2}'] = x.contiguous() # res 2 (os4), 3 (os8), 4 (os16), 5 (os32)
        
        x = self.clip_model.visual.trunk.norm_pre(x)
        out['clip_vis_dense'] = x.contiguous()
        return out
    
    def visual_prediction_forward_convnext(self, x):
        batch, num_query, channel = x.shape
        x = x.reshape(batch*num_query, channel, 1, 1) # fake 2D input
        x = self.clip_model.visual.trunk.head(x)
        x = self.clip_model.visual.head(x)
        return x.view(batch, num_query, x.shape[-1]) # B x num_queries x 640
    
    def visual_prediction_forward_convnext_2d(self, x):
        
        clip_vis_dense = self.clip_model.visual.trunk.head.norm(x)
        clip_vis_dense = self.clip_model.visual.trunk.head.drop(clip_vis_dense.permute(0, 2, 3, 1))
        clip_vis_dense = self.clip_model.visual.head(clip_vis_dense).permute(0, 3, 1, 2)
        
        return clip_vis_dense
    
    def run_on_image_with_points(self, ori_image, points):
        height, width, _ = ori_image.shape

        image = ori_image
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        ori_image = cv2.cvtColor(ori_image, cv2.COLOR_BGR2RGB)

        input_point = np.array(points)
        input_label = np.array([1])

        with torch.no_grad():
            self.predictor.set_image(image)
            masks, _, _ = self.predictor.predict(point_coords=input_point, point_labels=input_label, multimask_output=False)

        pred_masks = BitMasks(masks)

        image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))

        pixel_mean = torch.tensor(PIXEL_MEAN).view(-1, 1, 1)
        pixel_std = torch.tensor(PIXEL_STD).view(-1, 1, 1)

        image = (image - pixel_mean) / pixel_std
        image = image.unsqueeze(0)

        # txts = [f'a photo of {cls_name}' for cls_name in self.class_names]
        # text = open_clip.tokenize(txts)

        with torch.no_grad():
            self.clip_model.cuda()
            # text_features = self.clip_model.encode_text(text.cuda())
            # text_features /= text_features.norm(dim=-1, keepdim=True)
            #np.save("/home/yongkangli/Mask-Adapter/text_embedding/lvis_coco_text_embedding.npy", text_features.cpu().numpy())
            text_features = self.text_embedding
            features = self.extract_features_convnext(image.cuda().float())
            clip_feature = features['clip_vis_dense']

            clip_vis_dense = self.visual_prediction_forward_convnext_2d(clip_feature)

            semantic_activation_maps = self.mask_adapter(clip_vis_dense, pred_masks.tensor.unsqueeze(0).float().cuda())
            maps_for_pooling = F.interpolate(semantic_activation_maps, size=clip_feature.shape[-2:], mode='bilinear', align_corners=False)

            B, C = clip_feature.size(0), clip_feature.size(1)
            N = maps_for_pooling.size(1)
            num_instances = N // 16
            maps_for_pooling = F.softmax(F.logsigmoid(maps_for_pooling).view(B, N,-1), dim=-1)
            pooled_clip_feature = torch.bmm(maps_for_pooling, clip_feature.view(B, C, -1).permute(0, 2, 1))
            pooled_clip_feature = self.visual_prediction_forward_convnext(pooled_clip_feature)
            pooled_clip_feature = (pooled_clip_feature.reshape(B, num_instances, 16, -1).mean(dim=-2).contiguous())

            class_preds = (100.0 * pooled_clip_feature @ text_features.T).softmax(dim=-1)
        class_preds = class_preds.squeeze(0)

        # Resize mask to match original image size
        pred_mask = cv2.resize(masks.squeeze(0), (width, height), interpolation=cv2.INTER_NEAREST)  # Resize mask to match original image size

        # Create an overlay for the mask with a transparent background (using alpha transparency)
        overlay = ori_image.copy()
        mask_colored = np.zeros_like(ori_image)
        mask_colored[pred_mask == 1] = [234, 103, 112]  # Green color for the mask

        # Apply the mask with transparency (alpha blending)
        alpha = 0.5
        cv2.addWeighted(mask_colored, alpha, overlay, 1 - alpha, 0, overlay)

        # Draw boundary (contours) on the overlay
        contours, _ = cv2.findContours(pred_mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        cv2.drawContours(overlay, contours, -1, (255, 255, 255), 2)  # White boundary

        # Add label based on the class with the highest score
        max_scores, max_score_idx = class_preds.max(dim=1)  # Find the max score across the class predictions
        label = f"{self.class_names[max_score_idx.item()]}: {max_scores.item():.2f}"

        # Dynamically place the label near the clicked point
        text_x = min(width - 200, points[0][0] + 20)  # Add some offset from the point
        text_y = min(height - 30, points[0][1] + 20)  # Ensure the text does not go out of bounds

        # Put text near the point
        cv2.putText(overlay, label, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)

        return None, Image.fromarray(overlay)