Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,749 Bytes
55249e4 eae9bb9 f773839 73550bc f773839 55249e4 b4925d2 f773839 73550bc 06aa340 73550bc 2ba4ec8 db98a16 f773839 0221ae2 f773839 41d006c f773839 2ba4ec8 db98a16 55249e4 2ba4ec8 281ac0f 73550bc f773839 281ac0f 0221ae2 f773839 55249e4 b4925d2 55249e4 f773839 c570f20 7fa46c5 3dd984b c570f20 55249e4 b4925d2 55249e4 c570f20 73550bc 06aa340 73550bc 06aa340 73550bc c570f20 06aa340 c570f20 06aa340 c570f20 e53c1e6 3dd984b f773839 e8b794f f773839 2ba4ec8 35a87cf f773839 2ba4ec8 35a87cf f773839 79162b8 73550bc 55249e4 73550bc f773839 0221ae2 f773839 0221ae2 f773839 2ed7fa7 b9b9e70 2ed7fa7 b9b9e70 a0f5007 2ed7fa7 f773839 06aa340 f773839 55249e4 f773839 c570f20 55249e4 c570f20 55249e4 06aa340 c570f20 3dd984b 55249e4 c570f20 55249e4 c570f20 55249e4 c570f20 55249e4 c570f20 06aa340 55249e4 06aa340 55249e4 06aa340 c570f20 06aa340 79162b8 fe8ff41 79162b8 06aa340 c570f20 f773839 73550bc 55249e4 73550bc 55249e4 73550bc 55249e4 73550bc 55249e4 73550bc 06aa340 55249e4 06aa340 55249e4 06aa340 79162b8 fe8ff41 79162b8 f773839 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
## Some code was modified from Ovseg and OV-Sam.Thanks to their excellent work.
## Ovseg Code:https://github.com/facebookresearch/ov-seg
## OV-Sam Code:https://github.com/HarborYuan/ovsam
import spaces
import multiprocessing as mp
import numpy as np
from PIL import Image,ImageDraw
import torch
try:
import detectron2
except:
import os
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
from detectron2.config import get_cfg
from detectron2.projects.deeplab import add_deeplab_config
from detectron2.data.detection_utils import read_image
from mask_adapter import add_maskformer2_config, add_fcclip_config, add_mask_adapter_config
from mask_adapter.sam_maskadapter import SAMVisualizationDemo, SAMPointVisualizationDemo
import gradio as gr
import open_clip
from sam2.build_sam import build_sam2
from mask_adapter.modeling.meta_arch.mask_adapter_head import build_mask_adapter
from mask_adapter.data.datasets import openseg_classes
COCO_CATEGORIES_pan = openseg_classes.get_coco_categories_with_prompt_eng()
stuff_classes = [k["name"] for k in COCO_CATEGORIES_pan]
ADE20K_150_CATEGORIES_ = openseg_classes.get_ade20k_categories_with_prompt_eng()
ade20k_stuff_classes = [k["name"] for k in ADE20K_150_CATEGORIES_]
class_names_coco_ade20k = stuff_classes + ade20k_stuff_classes
def setup_cfg(config_file):
cfg = get_cfg()
add_deeplab_config(cfg)
add_maskformer2_config(cfg)
add_fcclip_config(cfg)
add_mask_adapter_config(cfg)
cfg.merge_from_file(config_file)
cfg.freeze()
return cfg
class IMGState:
def __init__(self):
self.img = None
self.selected_points = []
self.selected_points_labels = []
self.selected_bboxes = []
self.available_to_set = True
def set_img(self, img):
self.img = img
self.available_to_set = False
def clear(self):
self.img = None
self.selected_points = []
self.selected_points_labels = []
self.selected_bboxes = []
self.available_to_set = True
def clean(self):
self.selected_points = []
self.selected_points_labels = []
self.selected_bboxes = []
@property
def available(self):
return self.available_to_set
@spaces.GPU
@torch.no_grad()
@torch.autocast(device_type="cuda", dtype=torch.float32)
def inference_automatic(input_img, class_names):
mp.set_start_method("spawn", force=True)
config_file = './configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml'
cfg = setup_cfg(config_file)
demo = SAMVisualizationDemo(cfg, 0.8, sam2_model, clip_model,mask_adapter)
class_names = class_names.split(',')
img = read_image(input_img, format="BGR")
if len(class_names) == 1:
class_names.append('others')
txts = [f'a photo of {cls_name}' for cls_name in class_names]
text = open_clip.tokenize(txts)
text_features = clip_model.encode_text(text.cuda())
text_features /= text_features.norm(dim=-1, keepdim=True)
_, visualized_output = demo.run_on_image(img, class_names,text_features)
return Image.fromarray(np.uint8(visualized_output.get_image())).convert('RGB')
@spaces.GPU
@torch.no_grad()
@torch.autocast(device_type="cuda", dtype=torch.float32)
def inference_point(input_img, img_state,class_names_input):
mp.set_start_method("spawn", force=True)
points = img_state.selected_points
print(f"Selected point: {points}")
config_file = './configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml'
cfg = setup_cfg(config_file)
demo = SAMPointVisualizationDemo(cfg, 0.8, sam2_model, clip_model,mask_adapter)
if not class_names_input:
class_names_input = class_names_coco_ade20k
if class_names_input == class_names_coco_ade20k:
text_features = torch.from_numpy(np.load("./text_embedding/coco_ade20k_text_embedding_new.npy")).cuda()
_, visualized_output = demo.run_on_image_with_points(img_state.img, points,text_features)
else:
class_names_input = class_names_input.split(',')
txts = [f'a photo of {cls_name}' for cls_name in class_names_input]
text = open_clip.tokenize(txts)
text_features = clip_model.encode_text(text.cuda())
text_features /= text_features.norm(dim=-1, keepdim=True)
_, visualized_output = demo.run_on_image_with_points(img_state.img, points,text_features,class_names_input)
return visualized_output
sam2_model = None
clip_model = None
mask_adapter = None
@spaces.GPU
@torch.no_grad()
@torch.autocast(device_type="cuda", dtype=torch.float32)
def inference_box(input_img, img_state,class_names_input):
# if len(img_state.selected_bboxes) != 2:
# return None
mp.set_start_method("spawn", force=True)
box_points = img_state.selected_bboxes
bbox = (
min(box_points[0][0], box_points[1][0]),
min(box_points[0][1], box_points[1][1]),
max(box_points[0][0], box_points[1][0]),
max(box_points[0][1], box_points[1][1]),
)
bbox = np.array(bbox)
config_file = './configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml'
cfg = setup_cfg(config_file)
demo = SAMPointVisualizationDemo(cfg, 0.8, sam2_model, clip_model,mask_adapter)
if not class_names_input:
class_names_input = class_names_coco_ade20k
if class_names_input == class_names_coco_ade20k:
text_features = torch.from_numpy(np.load("./text_embedding/coco_ade20k_text_embedding_new.npy")).cuda()
_, visualized_output = demo.run_on_image_with_boxes(img_state.img, bbox,text_features)
else:
class_names_input = class_names_input.split(',')
txts = [f'a photo of {cls_name}' for cls_name in class_names_input]
text = open_clip.tokenize(txts)
text_features = clip_model.encode_text(text.cuda())
text_features /= text_features.norm(dim=-1, keepdim=True)
_, visualized_output = demo.run_on_image_with_boxes(img_state.img, bbox,text_features,class_names_input)
return visualized_output
def get_points_with_draw(image, img_state, evt: gr.SelectData):
label = 'Add Mask'
x, y = evt.index[0], evt.index[1]
point_radius, point_color = 10, (97, 217, 54) if label == "Add Mask" else (237, 34, 13)
img_state.selected_points.append([x, y])
img_state.selected_points_labels.append(1 if label == "Add Mask" else 0)
if img_state.img is None:
img_state.set_img(np.array(image))
draw = ImageDraw.Draw(image)
draw.polygon(
[
(x, y - point_radius),
(x + point_radius * 0.25, y - point_radius * 0.25),
(x + point_radius, y),
(x + point_radius * 0.25, y + point_radius * 0.25),
(x, y + point_radius),
(x - point_radius * 0.25, y + point_radius * 0.25),
(x - point_radius, y),
(x - point_radius * 0.25, y - point_radius * 0.25)
],
fill=point_color,
)
return img_state, image
def get_bbox_with_draw(image, img_state, evt: gr.SelectData):
x, y = evt.index[0], evt.index[1]
point_radius, point_color, box_outline = 5, (237, 34, 13), 2
box_color = (237, 34, 13)
if len(img_state.selected_bboxes) in [0, 1]:
img_state.selected_bboxes.append([x, y])
elif len(img_state.selected_bboxes) == 2:
img_state.selected_bboxes = [[x, y]]
image = Image.fromarray(img_state.img)
else:
raise ValueError(f"Cannot be {len(img_state.selected_bboxes)}")
if img_state.img is None:
img_state.set_img(np.array(image))
draw = ImageDraw.Draw(image)
draw.ellipse(
[(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
fill=point_color,
)
if len(img_state.selected_bboxes) == 2:
box_points = img_state.selected_bboxes
bbox = (min(box_points[0][0], box_points[1][0]),
min(box_points[0][1], box_points[1][1]),
max(box_points[0][0], box_points[1][0]),
max(box_points[0][1], box_points[1][1]),
)
draw.rectangle(
bbox,
outline=box_color,
width=box_outline
)
return img_state, image
def check_and_infer_box(input_image, img_state_bbox,class_names_input_box):
if len(img_state_bbox.selected_bboxes) == 2:
return inference_box(input_image, img_state_bbox, class_names_input_box)
return None
def initialize_models(sam_path, adapter_pth, model_cfg, cfg):
cfg = setup_cfg(cfg)
global sam2_model, clip_model, mask_adapter
if sam2_model is None:
sam2_model = build_sam2(model_cfg, sam_path, device="cpu", apply_postprocessing=False)
sam2_model = sam2_model.to("cuda")
print("SAM2 model initialized.")
if clip_model is None:
clip_model, _, _ = open_clip.create_model_and_transforms("convnext_large_d_320", pretrained="laion2b_s29b_b131k_ft_soup")
clip_model = clip_model.eval()
clip_model = clip_model.to("cuda")
print("CLIP model initialized.")
if mask_adapter is None:
mask_adapter = build_mask_adapter(cfg, "MASKAdapterHead").to("cuda")
mask_adapter = mask_adapter.eval()
adapter_state_dict = torch.load(adapter_pth)
mask_adapter.load_state_dict(adapter_state_dict)
print("Mask Adapter model initialized.")
def preprocess_example(input_img, img_state):
img_state.clear()
return img_state,None
def clear_everything(img_state):
img_state.clear()
return img_state, None, None, gr.Textbox(value='',lines=1, placeholder=class_names_coco_ade20k, label='Class Names')
def clean_prompts(img_state):
img_state.clean()
return img_state, Image.fromarray(img_state.img), None
# 初始化配置和模型
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
sam_path = './sam2.1_hiera_large.pt'
adapter_pth = './model_0279999_with_sem_new.pth'
cfg = './configs/ground-truth-warmup/mask-adapter/mask_adapter_convnext_large_cocopan_eval_ade20k.yaml'
initialize_models(sam_path, adapter_pth, model_cfg, cfg)
# Examples for testing
examples = [
['./demo/images/000000001025.jpg', 'dog, beach, trees, sea, sky, snow, person, rocks, buildings, birds, beach umbrella, beach chair'],
['./demo/images/ADE_val_00000979.jpg', 'sky,sea,mountain,pier,beach,island,,landscape,horizon'],
['./demo/images/ADE_val_00001200.jpg', 'bridge, mountains, trees, water, sky, buildings, boats, animals, flowers, waterfalls, grasslands, rocks'],
]
examples_point = [
['./demo/images/ADE_val_00000739.jpg'],
['./demo/images/000000052462.jpg'],
['./demo/images/000000081766.jpg'],
['./demo/images/ADE_val_00000001.jpg'],
['./demo/images/000000033707.jpg'],
['./demo/images/ADE_val_00000572.jpg']
]
output_labels = ['segmentation map']
title = '<center><h2>Mask-Adapter + Segment Anything-2</h2></center>'
description = """
<b>Mask-Adapter: The Devil is in the Masks for Open-Vocabulary Segmentation</b><br>
Mask-Adapter effectively extends to SAM or SAM-2 without additional training, achieving impressive results across multiple open-vocabulary segmentation benchmarks.<br>
<div style="display: flex; gap: 20px;">
<a href="https://arxiv.org/abs/2406.20076">
<img src="https://img.shields.io/badge/arXiv-Paper-red" alt="arXiv Paper">
</a>
<a href="https://github.com/hustvl/MaskAdapter">
<img src="https://img.shields.io/badge/GitHub-Code-blue" alt="GitHub Code">
</a>
</div>
"""
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Tabs():
with gr.TabItem("Automatic Mode"):
with gr.Row():
with gr.Column():
input_image = gr.Image(type='filepath', label="Input Image")
class_names = gr.Textbox(lines=1, placeholder=None, label='Class Names')
with gr.Column():
output_image = gr.Image(type="pil", label='Segmentation Map')
# Buttons below segmentation map (now placed under segmentation map)
run_button = gr.Button("Run Automatic Segmentation", elem_id="run_button",variant='primary')
run_button.click(inference_automatic, inputs=[input_image, class_names], outputs=output_image)
clear_button = gr.Button("Clear")
clear_button.click(lambda: None, inputs=None, outputs=output_image)
with gr.Row():
gr.Examples(examples=examples, inputs=[input_image, class_names], outputs=output_image)
with gr.TabItem("Box Mode"):
img_state_bbox = gr.State(value=IMGState())
with gr.Row(): # 水平排列
with gr.Column(scale=1):
input_image = gr.Image( label="Input Image", type="pil")
class_names_input_box = gr.Textbox(lines=1, placeholder=class_names_coco_ade20k, label='Class Names')
with gr.Column(scale=1):
output_image_box = gr.Image(type="pil", label='Segmentation Map',interactive=False) # 输出分割图
clear_prompt_button_box = gr.Button("Clean Prompt")
clear_button_box = gr.Button("Restart")
gr.Markdown("Click the top-left and bottom-right corners of the image to select a rectangular area")
input_image.select(
get_bbox_with_draw,
[input_image, img_state_bbox],
outputs=[img_state_bbox, input_image]
).then(
check_and_infer_box,
inputs=[input_image, img_state_bbox,class_names_input_box],
outputs=[output_image_box]
)
clear_prompt_button_box.click(
clean_prompts,
inputs=[img_state_bbox],
outputs=[img_state_bbox, input_image, output_image_box]
)
clear_button_box.click(
clear_everything,
inputs=[img_state_bbox],
outputs=[img_state_bbox, input_image, output_image_box,class_names_input_box]
)
input_image.clear(
clear_everything,
inputs=[img_state_bbox],
outputs=[img_state_bbox, input_image, output_image_box,class_names_input_box]
)
output_image_box.clear(
clear_everything,
inputs=[img_state_bbox],
outputs=[img_state_bbox, input_image, output_image_box,class_names_input_box]
)
gr.Examples(
examples=examples_point,
inputs=[input_image, img_state_bbox],
outputs=[img_state_bbox, output_image_box],
examples_per_page=6,
fn=preprocess_example,
run_on_click=True,
cache_examples=False,
)
with gr.TabItem("Point Mode"):
img_state_points = gr.State(value=IMGState())
with gr.Row(): # 水平排列
with gr.Column(scale=1):
input_image = gr.Image( label="Input Image", type="pil")
class_names_input_point = gr.Textbox(lines=1, placeholder=class_names_coco_ade20k, label='Class Names')
with gr.Column(scale=1):
output_image_point = gr.Image(type="pil", label='Segmentation Map',interactive=False) # 输出分割图
clear_prompt_button_point = gr.Button("Clean Prompt")
clear_button_point = gr.Button("Restart")
input_image.select(
get_points_with_draw,
[input_image, img_state_points],
outputs=[img_state_points, input_image]
).then(
inference_point,
inputs=[input_image, img_state_points,class_names_input_point],
outputs=[output_image_point]
)
clear_prompt_button_point.click(
clean_prompts,
inputs=[img_state_points],
outputs=[img_state_points, input_image, output_image_point]
)
clear_button_point.click(
clear_everything,
inputs=[img_state_points],
outputs=[img_state_points, input_image, output_image_point,class_names_input_point]
)
input_image.clear(
clear_everything,
inputs=[img_state_points],
outputs=[img_state_points, input_image, output_image_point,class_names_input_point]
)
output_image_point.clear(
clear_everything,
inputs=[img_state_points],
outputs=[img_state_points, input_image, output_image_point,class_names_input_point]
)
gr.Examples(
examples=examples_point,
inputs=[input_image, img_state_points],
outputs=[img_state_points, output_image_point],
examples_per_page=6,
fn=preprocess_example,
run_on_click=True,
cache_examples=False,
)
# Example images below buttons
demo.launch()
|