Spaces:
Running
on
Zero
Running
on
Zero
""" | |
This file may have been modified by Bytedance Ltd. and/or its affiliates (“Bytedance's Modifications”). | |
All Bytedance's Modifications are Copyright (year) Bytedance Ltd. and/or its affiliates. | |
Reference: https://github.com/facebookresearch/Mask2Former/blob/main/train_net.py | |
MAFT-Plus Training Script. | |
This script is a simplified version of the training script in detectron2/tools. | |
""" | |
try: | |
# ignore ShapelyDeprecationWarning from fvcore | |
from shapely.errors import ShapelyDeprecationWarning | |
import warnings | |
warnings.filterwarnings('ignore', category=ShapelyDeprecationWarning) | |
except: | |
pass | |
import copy | |
import itertools | |
import logging | |
import os | |
# os.environ['CUDA_VISIBLE_DEVICES'] = '2,4,6' | |
from collections import OrderedDict | |
from typing import Any, Dict, List, Set | |
import torch | |
import detectron2.utils.comm as comm | |
from detectron2.checkpoint import DetectionCheckpointer | |
from detectron2.config import get_cfg | |
from detectron2.data import MetadataCatalog, build_detection_train_loader | |
from detectron2.engine import ( | |
DefaultTrainer, | |
default_argument_parser, | |
default_setup, | |
launch, | |
) | |
from detectron2.evaluation import ( | |
CityscapesInstanceEvaluator, | |
CityscapesSemSegEvaluator, | |
COCOEvaluator, | |
COCOPanopticEvaluator, | |
DatasetEvaluators, | |
LVISEvaluator, | |
SemSegEvaluator, | |
verify_results, | |
) | |
from detectron2.projects.deeplab import add_deeplab_config, build_lr_scheduler | |
from detectron2.solver.build import maybe_add_gradient_clipping | |
from detectron2.utils.logger import setup_logger | |
from maft import ( | |
COCOInstanceNewBaselineDatasetMapper, | |
COCOPanopticNewBaselineDatasetMapper, | |
COCOSemanticNewBaselineDatasetMapper, | |
InstanceSegEvaluator, | |
#SemSegEvaluator, | |
MaskFormerInstanceDatasetMapper, | |
MaskFormerPanopticDatasetMapper, | |
MaskFormerSemanticDatasetMapper, | |
SemanticSegmentorWithTTA, | |
add_maskformer2_config, | |
add_fcclip_config, | |
add_mask_adapter_config, | |
) | |
class Trainer(DefaultTrainer): | |
""" | |
Extension of the Trainer class adapted to FCCLIP. | |
""" | |
def build_evaluator(cls, cfg, dataset_name, output_folder=None): | |
""" | |
Create evaluator(s) for a given dataset. | |
This uses the special metadata "evaluator_type" associated with each | |
builtin dataset. For your own dataset, you can simply create an | |
evaluator manually in your script and do not have to worry about the | |
hacky if-else logic here. | |
""" | |
if output_folder is None: | |
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") | |
evaluator_list = [] | |
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type | |
# semantic segmentation | |
if cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_semantic": | |
evaluator_list.append( | |
SemSegEvaluator( | |
dataset_name, | |
distributed=True, | |
output_dir=output_folder, | |
) | |
) | |
# panoptic segmentation | |
elif cfg.INPUT.DATASET_MAPPER_NAME == "coco_panoptic_lsj": | |
evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_dir=output_folder)) | |
if len(evaluator_list) == 0: | |
raise NotImplementedError( | |
"no Evaluator for the dataset {} with the type {}".format( | |
dataset_name, evaluator_type | |
) | |
) | |
elif len(evaluator_list) == 1: | |
return evaluator_list[0] | |
return DatasetEvaluators(evaluator_list) | |
def build_train_loader(cls, cfg): | |
# Semantic segmentation dataset mapper | |
if cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_semantic": | |
mapper = MaskFormerSemanticDatasetMapper(cfg, True) | |
return build_detection_train_loader(cfg, mapper=mapper) | |
# Panoptic segmentation dataset mapper | |
elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_panoptic": | |
mapper = MaskFormerPanopticDatasetMapper(cfg, True) | |
return build_detection_train_loader(cfg, mapper=mapper) | |
# Instance segmentation dataset mapper | |
elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_instance": | |
mapper = MaskFormerInstanceDatasetMapper(cfg, True) | |
return build_detection_train_loader(cfg, mapper=mapper) | |
# coco instance segmentation lsj new baseline | |
elif cfg.INPUT.DATASET_MAPPER_NAME == "coco_instance_lsj": | |
mapper = COCOInstanceNewBaselineDatasetMapper(cfg, True) | |
return build_detection_train_loader(cfg, mapper=mapper) | |
# coco panoptic segmentation lsj new baseline | |
elif cfg.INPUT.DATASET_MAPPER_NAME == "coco_panoptic_lsj": | |
mapper = COCOPanopticNewBaselineDatasetMapper(cfg, True) | |
return build_detection_train_loader(cfg, mapper=mapper) | |
# coco panoptic segmentation lsj new baseline | |
elif cfg.INPUT.DATASET_MAPPER_NAME == "coco_semantic_lsj": | |
mapper = COCOSemanticNewBaselineDatasetMapper(cfg, True) | |
return build_detection_train_loader(cfg, mapper=mapper) | |
else: | |
mapper = None | |
return build_detection_train_loader(cfg, mapper=mapper) | |
def build_lr_scheduler(cls, cfg, optimizer): | |
""" | |
It now calls :func:`detectron2.solver.build_lr_scheduler`. | |
Overwrite it if you'd like a different scheduler. | |
""" | |
return build_lr_scheduler(cfg, optimizer) | |
def build_optimizer(cls, cfg, model): | |
weight_decay_norm = cfg.SOLVER.WEIGHT_DECAY_NORM | |
weight_decay_embed = cfg.SOLVER.WEIGHT_DECAY_EMBED | |
defaults = {} | |
defaults["lr"] = cfg.SOLVER.BASE_LR | |
defaults["weight_decay"] = cfg.SOLVER.WEIGHT_DECAY | |
norm_module_types = ( | |
torch.nn.BatchNorm1d, | |
torch.nn.BatchNorm2d, | |
torch.nn.BatchNorm3d, | |
torch.nn.SyncBatchNorm, | |
# NaiveSyncBatchNorm inherits from BatchNorm2d | |
torch.nn.GroupNorm, | |
torch.nn.InstanceNorm1d, | |
torch.nn.InstanceNorm2d, | |
torch.nn.InstanceNorm3d, | |
torch.nn.LayerNorm, | |
torch.nn.LocalResponseNorm, | |
) | |
params: List[Dict[str, Any]] = [] | |
memo: Set[torch.nn.parameter.Parameter] = set() | |
for module_name, module in model.named_modules(): | |
for module_param_name, value in module.named_parameters(recurse=False): | |
if not value.requires_grad: | |
continue | |
# Avoid duplicating parameters | |
if value in memo: | |
continue | |
memo.add(value) | |
hyperparams = copy.copy(defaults) | |
if "backbone" in module_name: | |
hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.BACKBONE_MULTIPLIER | |
if ( | |
"relative_position_bias_table" in module_param_name | |
or "absolute_pos_embed" in module_param_name | |
): | |
print(module_param_name) | |
hyperparams["weight_decay"] = 0.0 | |
if isinstance(module, norm_module_types): | |
hyperparams["weight_decay"] = weight_decay_norm | |
if isinstance(module, torch.nn.Embedding): | |
hyperparams["weight_decay"] = weight_decay_embed | |
params.append({"params": [value], **hyperparams}) | |
def maybe_add_full_model_gradient_clipping(optim): | |
# detectron2 doesn't have full model gradient clipping now | |
clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE | |
enable = ( | |
cfg.SOLVER.CLIP_GRADIENTS.ENABLED | |
and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model" | |
and clip_norm_val > 0.0 | |
) | |
class FullModelGradientClippingOptimizer(optim): | |
def step(self, closure=None): | |
all_params = itertools.chain(*[x["params"] for x in self.param_groups]) | |
torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val) | |
super().step(closure=closure) | |
return FullModelGradientClippingOptimizer if enable else optim | |
optimizer_type = cfg.SOLVER.OPTIMIZER | |
if optimizer_type == "SGD": | |
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)( | |
params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM | |
) | |
elif optimizer_type == "ADAMW": | |
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)( | |
params, cfg.SOLVER.BASE_LR | |
) | |
else: | |
raise NotImplementedError(f"no optimizer type {optimizer_type}") | |
if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model": | |
optimizer = maybe_add_gradient_clipping(cfg, optimizer) | |
return optimizer | |
def test_with_TTA(cls, cfg, model): | |
logger = logging.getLogger("detectron2.trainer") | |
# In the end of training, run an evaluation with TTA. | |
logger.info("Running inference with test-time augmentation ...") | |
model = SemanticSegmentorWithTTA(cfg, model) | |
evaluators = [ | |
cls.build_evaluator( | |
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA") | |
) | |
for name in cfg.DATASETS.TEST | |
] | |
res = cls.test(cfg, model, evaluators) | |
res = OrderedDict({k + "_TTA": v for k, v in res.items()}) | |
return res | |
def setup(args): | |
""" | |
Create configs and perform basic setups. | |
""" | |
cfg = get_cfg() | |
# for poly lr schedule | |
add_deeplab_config(cfg) | |
add_maskformer2_config(cfg) | |
add_fcclip_config(cfg) | |
add_mask_adapter_config(cfg) | |
cfg.merge_from_file(args.config_file) | |
cfg.merge_from_list(args.opts) | |
cfg.merge_from_list(['SEED', 123]) | |
cfg.freeze() | |
default_setup(cfg, args) | |
# Setup logger for "maft-plus" module | |
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="maft-plus") | |
return cfg | |
def main(args): | |
# torch.multiprocessing.set_start_method('spawn') | |
cfg = setup(args) | |
if args.eval_only: | |
model = Trainer.build_model(cfg) | |
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( | |
cfg.MODEL.WEIGHTS, resume=args.resume | |
) | |
res = Trainer.test(cfg, model) | |
if cfg.TEST.AUG.ENABLED: | |
res.update(Trainer.test_with_TTA(cfg, model)) | |
if comm.is_main_process(): | |
verify_results(cfg, res) | |
return res | |
trainer = Trainer(cfg) | |
trainer.resume_or_load(resume=args.resume) | |
return trainer.train() | |
if __name__ == "__main__": | |
args = default_argument_parser().parse_args() | |
print("Command Line Args:", args) | |
launch( | |
main, | |
args.num_gpus, | |
num_machines=args.num_machines, | |
machine_rank=args.machine_rank, | |
dist_url=args.dist_url, | |
args=(args,), | |
) | |