|
import gradio as gr |
|
from transformers import AutoModelForCausalLM |
|
import torch |
|
|
|
|
|
model_name = "wop/kosmox-gguf" |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
|
|
def format_chat(messages, add_generation_prompt): |
|
formatted = "<BOS>" |
|
for message in messages: |
|
if message['from'] == 'human': |
|
formatted += ' ' + message['value'] + ' ' |
|
elif message['from'] == 'gpt': |
|
formatted += ' ' + message['value'] + ' ' |
|
else: |
|
formatted += '<|' + message['from'] + '|> ' + message['value'] + ' ' |
|
if add_generation_prompt: |
|
formatted += ' ' |
|
return formatted |
|
|
|
|
|
def respond(message, history, system_message, max_tokens, temperature, top_p): |
|
|
|
messages = [{"from": "system", "value": system_message}] |
|
for user_msg, bot_msg in history: |
|
if user_msg: |
|
messages.append({"from": "human", "value": user_msg}) |
|
if bot_msg: |
|
messages.append({"from": "gpt", "value": bot_msg}) |
|
messages.append({"from": "human", "value": message}) |
|
|
|
|
|
chat_input = format_chat(messages, add_generation_prompt=False) |
|
|
|
|
|
inputs = torch.tensor([ord(c) for c in chat_input]).unsqueeze(0) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
input_ids=inputs, |
|
max_length=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
do_sample=True |
|
) |
|
|
|
response = ''.join([chr(t) for t in outputs[0].tolist() if t < 256]) |
|
yield response.strip() |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), |
|
], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|