File size: 6,824 Bytes
aa3df59 dba9e3f aa3df59 c6351f0 aa3df59 02b95c7 22ff099 aa3df59 41047cd aa3df59 97f1e29 aa3df59 369ee53 22ff099 369ee53 aa3df59 369ee53 22ff099 aa3df59 22ff099 e6cdf75 22ff099 aa3df59 55e4938 aa3df59 369ee53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import sys
import fire
import gradio as gr
import torch
import transformers
from peft import PeftModel
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer
from utils.prompter import Prompter
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except: # noqa: E722
pass
def main(
load_8bit: bool = False,
base_model: str = "decapoda-research/llama-7b-hf",
lora_weights: str = "./",#adapter_model.bin
prompt_template: str = "med_template", # The prompt template to use, will default to alpaca.
server_name: str = "0.0.0.0", # Allows to listen on all interfaces by providing '0.0.0.0'
share_gradio: bool = False, #True
):
assert (
base_model
), "Please specify a --base_model, e.g. --base_model='decapoda-research/llama-7b-hf'"
f = open("debuginfo.txt", "a")
DebugInfo=[] #this is mainly for debug 2023.08.25
prompter = Prompter(prompt_template)
tokenizer = LlamaTokenizer.from_pretrained(base_model)
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
base_model,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
base_model, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
)
# unwind broken decapoda-research config
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if not load_8bit and device != "cpu":
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
def evaluate(
instruction,
input=None,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=256,
**kwargs,
):
import traceback
try:
DebugInfo.append("1.Enter in evaluate.")#TBD
f.write("1.Enter in evaluate.")
#f.close()
prompt = prompter.generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
f.write("2.after input_ids.")
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
f.write("3.before model.generate(..).")
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
DebugInfo.append("2.Generate out decode completed.")#TBD
f.write("4.Generate out decode completed.")
except error:
traceback.print_exc()
finally:
f.close()
return prompter.get_response(output),DebugInfo
gr.Interface(
fn=evaluate,
inputs=[
gr.components.Textbox(
lines=2,
label="Instruction",
placeholder="Tell me about alpacas.",
),
gr.components.Textbox(lines=2, label="Input", placeholder="none"),
gr.components.Slider(
minimum=0, maximum=1, value=0.1, label="Temperature"
),
gr.components.Slider(
minimum=0, maximum=1, value=0.75, label="Top p"
),
gr.components.Slider(
minimum=0, maximum=100, step=1, value=40, label="Top k"
),
gr.components.Slider(
minimum=1, maximum=4, step=1, value=4, label="Beams"
),
gr.components.Slider(
minimum=1, maximum=2000, step=1, value=256, label="Max tokens"
),
],
outputs=[
gr.inputs.Textbox(
lines=5,
label="Output",
)
,
gr.inputs.Textbox(
lines=4,
label="DebugInfo",
)
],
title="🦙🌲 Alpaca-LoRA",
description="Alpaca-LoRA is a 7B-parameter LLaMA model finetuned to follow instructions. It is trained on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset and makes use of the Huggingface LLaMA implementation. For more information, please visit [the project's website](https://github.com/tloen/alpaca-lora).", # noqa: E501
).launch(server_name=server_name, share=share_gradio, show_api=False, enable_queue=False)
# Old testing code follows.
"""
# testing code for readme
for instruction in [
"Tell me about alpacas.",
"Tell me about the president of Mexico in 2019.",
"Tell me about the king of France in 2019.",
"List all Canadian provinces in alphabetical order.",
"Write a Python program that prints the first 10 Fibonacci numbers.",
"Write a program that prints the numbers from 1 to 100. But for multiples of three print 'Fizz' instead of the number and for the multiples of five print 'Buzz'. For numbers which are multiples of both three and five print 'FizzBuzz'.", # noqa: E501
"Tell me five words that rhyme with 'shock'.",
"Translate the sentence 'I have no mouth but I must scream' into Spanish.",
"Count up from 1 to 500.",
]:
print("Instruction:", instruction)
print("Response:", evaluate(instruction))
print()
"""
if __name__ == "__main__":
import traceback
try:
fire.Fire(main)
except error:
traceback.print_exc()
|